1.A.4.c ii (b) - Off-road Vehicles and other Machinery: Forestry

Short description

Under sub-category 1.A.4.c ii (b) fuel combustion activities and resulting emissions from off-road vehicles and mobile machinery used in forestry are reported.

NFR-Code Source category Method AD EF Key Category Analysis
1.A.4.c ii (a) Off-road Vehicles and Other Machinery: Agriculture T1, T2 NS, M CS, D, M see superordinate chapter

Methodology

Activity data

Primary activity data (PAD) are taken from National Energy Balances (NEBs) line 67: 'Commercial, trade, services and other consumers' (AGEB, 2020) 1).

Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2020) 2), the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD MM (Knörr et al. (2020b) 3) (cf. NFR 1.A.4 - mobile).

Table 1: Annual contribution of forestry vehicles and mobile machinery to the primary fuel delivery data provided in NEB line 67

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel fuels
2,41% 1,36% 2,16% 2,88% 2,92% 2,99% 2,77% 2,76% 2,81% 2,89% 2,72% 2,79% 3,35% 3,54%
Gasoline fuels
68,5% 40,3% 44,9% 41,4% 35,5% 35,6% 33,1% 32,9% 33,1% 33,3% 31,6% 31,9% 35,8% 36,8%

source: own estimates based on 4)

Table 2: Annual mobile fuel consumption in forestry, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel Oil 2.695 1.332 2.051 2.368 2.583 2.712 2.472 2.559 2.718 2.931 2.865 3.024 3.393 3.625
Biodiesel 3.093 3.004 3.325 3.022 1.543 1.404 392 383 412 1.660 1.575 1.588 1.741 1.739
Gasoline 0 0 0 151 198 189 174 152 167 160 152 161 197 206
Biogasoline 0 0 0 21 60 58 17 16 18 72 68 67 78 75
Ʃ 1.A.4.c ii (ii) 5.788 4.336 5.375 5.562 4.383 4.364 3.055 3.110 3.316 4.824 4.660 4.840 5.409 5.646

Emission factors

The emission factors used here are of rather different quality: For all main pollutants, carbon monoxide and particulate matter, annually changing values computed within TREMOD MM (Knörr et al. (2020b)) 5) are used, representing the development of mitigation technologies and th effect of fuel-quality legislation.

Table 3: Annual coutry-specific emission factors from TREMOD MM1

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Gasoline fuels
NH3 0,075 0,083 0,083 0,086 0,087 0,088 0,091 0,092 0,092 0,092 0,092 0,092 0,092 0,092
NMVOC2 3,04 6,37 4,67 4,56 4,83 4,74 5,23 5,22 5,11 5,00 5,32 5,19 4,30 4,07
NMVOC3 5795 5099 5099 5320 5424 4858 3596 2897 2897 2897 2897 2897 2897 2901
NOx 42,6 49,4 49,4 76,4 86,0 78,5 63,1 55,1 55,1 55,1 55,1 55,1 55,1 55,1
SOx 10,1 8,27 3,22 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
BC5 5,09 3,73 3,73 3,86 3,91 3,96 4,08 4,13 4,13 4,13 4,13 4,13 4,13 4,13
PM4 102 74,6 74,6 77,2 78,1 79,2 81,5 82,7 82,7 82,7 82,7 82,7 82,7 82,7
TSP6 2,35 0,82 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
CO 16813 14796 14796 15371 15609 15827 16279 16514 16514 16514 16514 16514 16514 16514
Pb 1,471 0,516 0 0 0 0 0 0 0 0 0 0 0 0
Diesel fuels
NH3 0,164 0,169 0,174 0,176 0,177 0,177 0,177 0,177 0,177 0,177 0,177 0,177 0,177 0,178
NMVOC 191 157 130 80,2 46,5 42,4 38,7 35,0 31,4 28,1 25,3 22,9 20,9 19,1
NOx 982 1.053 1.071 834 543 495 454 422 397 375 351 326 305 287
SOx 79,6 60,5 14,0 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
BC5 84,6 60,8 41,8 27,7 21,6 21,0 20,4 19,3 17,8 16,1 14,5 13,0 11,5 10,1
PM4 155 112 75,8 45,3 30,4 28,8 27,3 25,3 23,1 20,8 18,6 16,5 14,6 12,9
CO 689 619 554 395 282 269 258 252 249 248 249 251 254 257

1 due to lack of better information: similar EF are applied for fossil and biofuels
2 from fuel combustion
3 from gasoline evaporation
4 EF(PM2.5) also applied for PM10 and TSP (assumption: > 99% of TSP consists of PM2.5)
5 estimated via a f-BCs as provided in 6), Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery
6 from leaded gasoline (until 1997)

With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.

Recalculations

Revisions in activity data result from slightly adapted EBZ67 shares as well as the implementation of primary activity data from the now finalised NEB 2018.

Table 5: Revised annual contribution of 1.A.2.g vii to fuel-specific over-all fuel deliveries provided in NEB line 67

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018
diesel fuels
Submission 2021 0,024 0,014 0,022 0,029 0,029 0,030 0,028 0,028 0,028 0,029 0,027 0,028 0,034
Submission 2020 0,024 0,013 0,020 0,027 0,027 0,027 0,025 0,026 0,026 0,027 0,025 0,026 0,026
absolute change 0,0003 0,0002 0,0011 0,0023 0,0024 0,0025 0,0024 0,0020 0,0022 0,0023 0,0021 0,0022 0,0076
relative change 1,08% 1,62% 5,38% 8,71% 9,16% 9,27% 9,36% 7,86% 8,29% 8,56% 8,54% 8,63% 29,4%
gasoline fuels
Submission 2021 0,685 0,403 0,449 0,414 0,355 0,356 0,331 0,329 0,331 0,333 0,316 0,319 0,358
Submission 2020 0,685 0,403 0,449 0,416 0,360 0,362 0,337 0,335 0,338 0,341 0,324 0,327 0,327
absolute change 0,000 0,000 0,000 -0,002 -0,005 -0,005 -0,006 -0,006 -0,007 -0,008 -0,008 -0,009 0,031
relative change 0,00% 0,00% 0,00% -0,46% -1,29% -1,46% -1,70% -1,88% -2,06% -2,23% -2,48% -2,66% 9,34%

Table 6: Revised activity data, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018
diesel fuels
Submission 2021 2.695 1.332 2.051 2.519 2.781 2.902 2.646 2.711 2.886 3.092 3.016 3.185 3.590
Submission 2020 2.666 1.311 1.946 2.221 2.519 2.645 2.408 2.510 2.662 2.846 2.778 2.931 2.758
absolute change 28,9 21,2 105 298 262 257 239 201 223 245 239 254 831
relative change 1,08% 1,62% 5,38% 13,4% 10,4% 9,70% 9,91% 8,00% 8,38% 8,62% 8,59% 8,67% 30,1%
gasoline fuels
Submission 2021 3.093 3.004 3.325 3.043 1.603 1.462 409 400 430 1.732 1.644 1.655 1.819
Submission 2020 3.093 3.004 3.325 3.057 1.624 1.484 416 407 439 1.772 1.685 1.700 1.663
absolute change 0,00 0,00 0,00 -14,0 -21,0 -21,7 -7,1 -7,7 -9,0 -39,6 -41,8 -45,1 155
relative change 0,00% 0,00% 0,00% -0,46% -1,29% -1,46% -1,70% -1,88% -2,06% -2,23% -2,48% -2,66% 9,34%
over-all fuel consumption
Submission 2021 5.788 4.336 5.375 5.562 4.383 4.364 3.055 3.110 3.316 4.824 4.660 4.840 5.409
Submission 2020 5.759 4.315 5.271 5.278 4.143 4.129 2.824 2.917 3.102 4.618 4.463 4.631 4.422
absolute change 28,9 21,2 105 284 241 235 231 193 214 206 197 209 987
relative change 0,50% 0,49% 1,99% 5,38% 5,81% 5,69% 8,20% 6,62% 6,90% 4,46% 4,41% 4,51% 22,3%

As in contrast, all emission factors remain unrevised compared to last year's susbmission, emission estimates for the years as of 2015 change in accordance with the underlying activity data.

For specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.


1) AGEB, 2020: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2018.html, (Aufruf: 29.11.2020), Köln & Berlin, 2020.
2) BAFA, 2020: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2018_dezember.html, Eschborn, 2020.
3), 4), 5) Knörr et al. (2020b): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2020, Heidelberg, 2020.
6) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.