meta data for this page
  •  

This is an old revision of the document!


1.A.4.c ii (b) - Off-road Vehicles and other Machinery: Forestry

Short description

Under sub-category 1.A.4.c ii (b) fuel combustion activities and resulting emissions from off-road vehicles and mobile machinery used in forestry are reported.

NFR-Code Source category Method AD EF Key Category Analysis
1.A.4.c ii (a) Off-road Vehicles and Other Machinery: Agriculture T1, T2 NS, M CS, D, M see superordinate chapter

Methodology

Activity data

Primary activity data (PAD) are taken from National Energy Balances (NEBs) line 67: 'Commercial, trade, services and other consumers' (AGEB, 2018) 1).

Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2018) 2), the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD MM (Knörr et al. (2019b)) 3) (cf. NFR 1.A.4 - mobile ]).

Table 1: Annual contribution of forestry vehicles and mobile machinery to the primary fuel delivery data provided in NEB line 67

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel fuels
2,41% 1,36% 2,16% 2,88% 2,92% 2,99% 2,77% 2,76% 2,81% 2,89% 2,72% 2,79% 3,35% 3,54%
Gasoline fuels
68,5% 40,3% 44,9% 41,4% 35,5% 35,6% 33,1% 32,9% 33,1% 33,3% 31,6% 31,9% 35,8% 36,8%

source: own estimates based on 4)

Table 2: Annual mobile fuel consumption in forestry, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel Oil 2.695 1.332 2.051 2.368 2.583 2.712 2.472 2.559 2.718 2.931 2.865 3.024 3.393 3.625
Biodiesel 3.093 3.004 3.325 3.022 1.543 1.404 392 383 412 1.660 1.575 1.588 1.741 1.739
Gasoline 0 0 0 151 198 189 174 152 167 160 152 161 197 206
Biogasoline 0 0 0 21 60 58 17 16 18 72 68 67 78 75
Ʃ 1.A.4.c ii (ii) 5.788 4.336 5.375 5.562 4.383 4.364 3.055 3.110 3.316 4.824 4.660 4.840 5.409 5.646

Emission factors

The emission factors used here are of rather different quality: For all main pollutants, carbon monoxide and particulate matter, annually changing values computed within TREMOD MM (Knörr et al. (2018b)) 5) are used, representing the development of mitigation technologies and th effect of fuel-quality legislation.

Table 3: Annual coutry-specific emission factors from TREMOD MM ^^1^^

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Gasoline fuels
NH3 0.089 0.092 0.093 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094
NMVOC2 77.8 74.8 82.3 101 106 106 106 106 106 106 106 106 106
NMVOC3 678 623 571 563 561 561 561 561 561 561 561 561 561
NOx 54.0 68.3 75.9 76.8 76.9 76.9 77.0 77.0 77.0 77.0 77.0 77.0 77.0
SOx 10.1 8.3 3.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BC5 0.302 0.271 0.241 0.236 0.236 0.236 0.236 0.236 0.235 0.235 0.235 0.235 0.235
PM4 6.03 5.43 4.83 4.72 4.71 4.71 4.71 4.71 4.71 4.71 4.71 4.71 4.71
TSP6 2.35 0.82 0 0 0 0 0 0 0 0 0 0 0
CO 38,459 35,290 32,423 32,108 34,681 35,250 35,791 36,289 36,661 36,840 36,918 36,973 37,010
Pb 1.471 0.516 0 0 0 0 0 0 0 0 0 0 0
Diesel fuels
NH3 0.161 0.164 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167
NMVOC 185 157 134 90 59 55 52 48 44 41 38 35 32
NOx 1,047 1,012 970 757 523 484 449 417 386 357 325 292 263
SOx 79.6 60.5 14.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BC5 78.5 64.1 51.1 36.4 27.6 26.5 25.3 23.8 22.1 20.5 18.8 17.2 15.7
PM4 149 121 94 60 39 36 34 32 29 27 25 22 20
CO 585 579 552 421 324 313 304 296 289 283 278 272 267

1 due to lack of better information: similar EF are applied for fossil and biofuels
2 from fuel combustion
3 from gasoline evaporation
4 EF(PM2.5) also applied for PM10 and TSP (assumption: > 99% of TSP consists of PM2.5)
5 estimated via a f-BCs as provided in 6), Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery
6 from leaded gasoline (until 1997)

With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

Recalculations

Revisions in activity data result from slightly adapted NCVs (2015-2017) as well as the implementation of primary activity data from the now finalised NEB 2017.

Table 5: Revised annual mobile fuel consumption in forestry, in terajoules

= 2015 = 2016 = 2017
= diesel fuels
~ Submission 2020 > 2,846 > 2,778 > 2,931
~ Submission 2019 > 2,846 > 2,778 > 2,914
~ absolute change > 0.10 > 0.11 > 17.09
~ relative change > 0.003% > 0.004% > 0.59%
= gasoline fuels
~ Submission 2020 > 1,772 > 1,685 > 1,700
~ Submission 2019 > 1,772 > 1,686 > 1,970
~ absolute change > -0.03 > -0.02 > -270
~ relative change > -0.002% > -0.001% > -13.72%
= over-all fuel consumption
~ Submission 2020 > 4,618 > 4,463 > 4,631
~ Submission 2019 > 4,618 > 4,463 > 4,884
~ absolute change > 0.07 > 0.08 > -253
~ relative change > 0.002% > 0.002% > -5.19%

As in contrast, all emission factors remain unrevised compared to last year's susbmission, emission estimates for the years as of 2015 change in accordance with the underlying activity data.

For more information on the impacts on emission estimates for Base Year and 2017, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations].

[!–

+ Planned improvements

+ FAQs

–]


bibliography : 1 : AGEB, 2019: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, (Aufruf: 30.11.2019), Köln & Berlin, 2019. : 2 : BAFA, 2019: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2017_dezember.html, Eschborn, 2019. : 3 : Knörr et al. (2019b): Knörr, W., Heidt, C., Gores, S., & Bergk, F. (2019b): ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2019, Heidelberg, 2019. : 4 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019. : 5 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer bibliography


1) (bibcite 1)
2) (bibcite 2)
3) (bibcite 3)
4) (bibcite 3)
5) (bibcite 3)
6) (bibcite 3)
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.