1.A.3.b i - Road transport: Passenger cars

Short description

In sub-category 1.A.3.b i - Road transport: Passenger cars emissions from fuel combustion in passenger cars (PCs) are reported.

Category Code Method AD EF
1.A.3.b i T1, T3 NS, M CS, M, D
Key Category SO2 NOx NH3 NMVOC CO TSP PM10 PM2.5 BC Pb Hg Cd PCDD/F PAH HCB
1.A.3.b i -/- L/T -/- L/T L/T -/- L/T L/T L/T L/T -/- -/- L/- -/- -

Methodology

Detailed information on the methods applied is provided in the superordinate chapter .

Activity data

Specific consumption data for passenger cars is generated within TREMOD 1).

The following table gives an overview of annual amounts of the fuels consumed by passenger cars in Germany.

Table 1: Annual passenger car fuel consumption, in terajoule

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel oil 251,081 304,573 330,544 447,843 491,684 517,460 518,642 556,149 589,801 612,084 641,130 661,289 629,483 628,079
Gasoline 1,280,592 1,263,563 1,198,941 960,365 766,348 763,397 719,091 718,322 721,165 685,429 685,497 695,259 668,949 675,555
LPG 138 138 94 2,357 21,823 23,613 23,532 23,077 21,464 18,963 16,799 15,377 16,153 17,332
CNG 0 0 0 1,604 5,351 5,494 5,140 4,380 4,483 4,476 3,590 3,247 3,332 3,412
Biodiesel 0 475 3,662 29,928 37,696 36,105 36,603 32,982 36,244 33,481 33,989 35,303 36,591 35,762
Biogasoline 0 0 0 6,597 29,609 31,292 31,866 30,792 31,361 29,728 29,775 29,312 30,078 29,136
Biogas 0 0 0 0 0 0 734 867 1,130 755 844 1,009 897 1,561
Ʃ 1.A.3.b i 1,531,811 1,568,749 1,533,241 1,448,694 1,352,511 1,377,360 1,335,609 1,366,568 1,405,647 1,384,915 1,411,625 1,440,795 1,385,484 1,390,837

Here, the following charts underline the ongoing shift from gasoline to diesel-powered passenger cars, that started around 1999/2000.

For information on mileage, please refer to sub-chapters on emissions from tyre & brake wear and road abrasion.

Emission factors

The majority of emission factors for exhaust emissions from road transport are taken from the 'Handbook Emission Factors for Road Transport' (HBEFA, version 4.1) 2) where they are provided on a tier3 level mostly and processed within the TREMOD software used by the party 3).

However, it is not possible to present these highly specific tier3 values in a comprehendible way here.

With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For heavy-metal (other then lead from leaded gasoline) and PAH exhaust-emissions, default emission factors from (EMEP/EEA, 2019) 4) have been applied. Regarding PCDD/F, a tier1 EF from (Rentz et al., 2008) 5) is used.

Table 3: tier1 emission factors

Pb Cd Hg As Cr Cu Ni Se Zn B[a]P B[b]F B[k]F I[1,2,3-c,d]p PAH 1-4 PCDD/F
[g/TJ] [mg/TJ] [µg/km]
Diesel oil 0.012 0.001 0.123 0.002 0.198 0.133 0.005 0.002 0.419 498 521 275 493 1.788
Biodiesel1 0.013 0.001 0.142 0.003 0.228 0.153 0.005 0.003 0.483 575 601 317 569 2.062
Gasoline fuels 0.037 0.005 0.200 0.007 0.145 0.103 0.053 0.005 0.758 96 140 69 158 464
CNG2 & biogas3 NE NE NE NE NE NE NE NE NE NE NE NE NE NE
LPG4 NE NE NE NE NE NE NE NE NE 4.35 0.00 4.35 4.35 13.0
all fuels 0.000006

1 values differ from EFs applied for fossil diesel oil to take into account the specific NCV of biodiesel
2 no specific default available from 6); value derived from CNG powered busses
3 no specific default available from 7); values available for CNG also applied for biogas
4 no specific default available from 8); value derived from LPG powered passenger cars

Table: Outcome of Key Category Analysis

for: NOx NMVOC CO PM10 PM2.5 BC Pb PCDD/F
by: Level & Trend L/T L/T L/T L/T L/T L/T L/-

Non-methane volatile organic compounds, nitrogen oxides, and carbon monoxide

Since 1990, exhaust emissions of nitrogen oxides, NMVOC, and carbon monoxide have decreased sharply due to catalytic-converter use and engine improvements resulting from ongoing tightening of emissions laws and improved fuel quality.

Ammonia and sulphur dioxide

As for the entire road transport sector, the trends for sulphur dioxide and ammonia exhaust emissions from passenger cars show charcteristics very different from those shown above.

Here, the strong dependence on increasing fuel qualities (sulphur content) leads to an cascaded downward trend of emissions , influenced only slightly by increases in fuel consumption and mileage.

For ammonia emissions the increasing use of catalytic converters in gasoline driven cars in the 1990s lead to a steep increase whereas both the technical development of the converters and the ongoing shift from gasoline to diesel cars resulted in decreasing emissions in the following years.

Particulate matter & Black carbon

(from fuel combustion only; no wear/abrasion included)

Starting in the middle of the 1990s, a so-called “diesel boom” began, leading to a switch from gasoline to diesel powered passenger cars. As the newly registered diesel cars had to meet the EURO2 standard (in force since 1996/'97) with a PM limit value less than half the EURO1 value, the growing diesel consumption was overcompensated qickly by the mitigation technologies implemented due to the new EURO norm. During the following years, new EURO norms came into force. With the still ongoing “diesel boom” those norms led to a stabilisation (EURO3, 2000/'01) of emissions and to another strong decrease of PM emissions (EURO4, 2005/'06), respectively. Over-all, the increased consumption of diesel in passenger cars was overastimated by the implemented mitigation technologies. The table below shows the evolution of the limit value for particle emissions from passenger cars with diesel engines.

With this submission, Black Carbon (BC) emissions are reported for the first time. Here, EF are estimated based on as fractions of PM as provided in 9). Due to this fuel-specific fractions, the trend of BC emissions reflects the ongoing shift from gasoline to diesel (“dieselisation”).

Table: EURO norms and their effect on limit values of PM emissions from diesel passenger cars

exhaust emission standard (EURO norm) Euro 1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6
in force for type approval since: 1 Jul 1992 1 Jan 1996 1 Jan 2000 1 Jan 2005 1 Sep 2009 1 Sep 2014
in force for initial registration since 1 Jan 1993 1 Jan 1997 1 Jan 2001 1 Jan 2006 1 Jan 2011 1 Jan 2015
resulting PM limit value in [mg/km] 180 80/1001 50 25 5 5

1 for direct injection engines

Recalculations

Compared to submission 2020, recalculations were carried out due to a routine revision of the TREMOD software and the revision of several National Energy Balances (NEB).

Here, activity data were revised within TREMOD.

Table 4: Revised fuel consumption data, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
DIESEL OIL
Submission 2021 251.081 304.573 330.544 447.843 433.071 443.483 462.982 483.943 491.684 517.460 518.642 556.149 589.801 612.084 641.130 661.289 629.483
Submission 2020 253.892 305.128 324.929 440.663 437.146 446.880 465.304 485.728 492.791 518.198 518.957 556.096 589.674 593.962 621.938 641.476 610.293
absolute change -2.811 -555 5.615 7.180 -4.075 -3.397 -2.322 -1.785 -1.107 -738 -315 53 127 18.122 19.192 19.813 19.190
relative change -1,11% -0,2% 1,73% 1,63% -0,93% -0,76% -0,50% -0,37% -0,22% -0,14% -0,06% 0,01% 0,02% 3,05% 3,09% 3,09% 3,14%
BIODIESEL
Submission 2021 475 3.662 29.928 52.216 59.334 46.126 39.097 37.696 36.105 36.603 32.982 36.244 33.481 33.989 35.303 36.591
Submission 2020 476 3.600 29.343 52.587 59.599 46.163 38.936 37.500 35.842 36.337 32.710 35.928 32.198 32.732 34.022 35.226
absolute change -0,87 62 585 -371 -265 -37 160 196 262 267 272 316 1.283 1.258 1.281 1.365
relative change -0,18% 1,73% 1,99% -0,71% -0,44% -0,08% 0,41% 0,52% 0,73% 0,73% 0,83% 0,88% 3,99% 3,84% 3,77% 3,88%
GASOLINE
Submission 2021 1.280.592 1.263.563 1.198.941 960.365 900.551 863.738 826.374 802.616 766.348 763.397 719.091 718.322 721.165 685.429 685.497 695.259 668.949
Submission 2020 1.275.916 1.260.078 1.196.370 958.621 899.359 862.416 825.308 801.658 765.478 762.566 718.328 717.580 720.676 684.853 684.954 694.769 668.337
absolute change 4.676 3.485 2.571 1.744 1.193 1.322 1.065 958 870 830 762 742 489 576 543 489 612
relative change 0,37% 0,28% 0,21% 0,18% 0,13% 0,15% 0,13% 0,12% 0,11% 0,11% 0,11% 0,10% 0,07% 0,08% 0,08% 0,07% 0,09%
BIOGASOLINE
Submission 2021 6.597 12.981 11.666 15.800 22.931 29.609 31.292 31.866 30.792 31.361 29.728 29.775 29.312 30.078
Submission 2020 6.585 12.964 11.648 15.779 22.904 29.575 31.257 31.833 30.760 31.340 29.703 29.752 29.291 30.051
absolute change 12,0 17,2 17,9 20,4 27,4 33,6 34,0 33,8 31,8 21,3 25,0 23,6 20,6 27,5
relative change 0,18% 0,13% 0,15% 0,13% 0,12% 0,11% 0,11% 0,11% 0,10% 0,07% 0,08% 0,08% 0,07% 0,09%
CNG
Submission 2021 1.604 2.280 3.174 4.146 5.062 5.351 5.494 5.140 4.380 4.483 4.476 3.590 3.247 3.332
Submission 2020 1.608 2.286 3.182 4.155 5.072 5.361 5.505 5.151 4.389 4.519 4.492 3.603 3.257 3.980
absolute change -4,25 -6,04 -7,89 -9,02 -9,76 -10,1 -10,4 -11,0 -8,9 -35,9 -16,0 -12,5 -10,3 -647
relative change -0,26% -0,26% -0,25% -0,22% -0,19% -0,19% -0,19% -0,21% -0,20% -0,80% -0,36% -0,35% -0,32% -16,3%
BIOGAS
Submission 2021 734 867 1.130 755 844 1.009 897
Submission 2020 736 868 1.139 757 847 1.013 930
absolute change -1,58 -1,76 -9,06 -2,70 -2,95 -3,20 -33,6
relative change -0,21% -0,20% -0,80% -0,36% -0,35% -0,32% -3,61%
LPG
Submission 2021 138 138 94,0 2.357 4.605 8.942 15.652 23.842 21.823 23.613 23.532 23.077 21.464 18.963 16.799 15.377 16.153
Submission 2020 138 138 94,0 2.357 4.605 8.942 15.652 23.842 21.823 23.613 23.532 23.077 21.464 18.963 16.799 15.377 13.570
absolute change 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 2.583
relative change 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,0% 19,0%
TOTAL FUEL CONSUMPTION
Submission 2021 1.531.811 1.568.749 1.533.241 1.448.694 1.405.704 1.390.337 1.371.079 1.377.491 1.352.511 1.377.360 1.335.609 1.366.568 1.405.647 1.384.915 1.411.625 1.440.795 1.385.484
Submission 2020 1.529.946 1.565.820 1.524.993 1.439.177 1.408.947 1.392.667 1.372.362 1.378.140 1.352.529 1.376.981 1.334.873 1.365.479 1.404.740 1.364.927 1.390.625 1.419.204 1.362.386
absolute change 1.865 2.929 8.248 9.516 -3.242 -2.330 -1.282 -649 -18 379 736 1.089 908 19.988 21.000 21.591 23.098
relative change 0,12% 0,19% 0,54% 0,66% -0,23% -0,17% -0,09% -0,05% 0,00% 0,03% 0,06% 0,08% 0,06% 1,46% 1,51% 1,52% 1,70%

Due to the variety of tier3 emission factors applied, it is not possible to display any changes in these data sets in a comprehendible way.

For more information on recalculated emission estimates reported for Base Year and 2018, please see the pollutant-specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

Besides a routine revision of the underlying model, no specific improvements are planned.


1), 3) Knörr et al. (2020a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2020.
2) Keller et al. (2017): Keller, M., Hausberger, S., Matzer, C., Wüthrich, P., & Notter, B.: Handbook Emission Factors for Road Transport, version 4.1 (Handbuch Emissionsfaktoren des Straßenverkehrs 4.1) URL: http://www.hbefa.net/e/index.html - Dokumentation, Bern, 2017.
4), 6), 7), 8), 9) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019; https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view; Copenhagen, 2019.
5) Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.