1.A.3.d ii - National Navigation

Short description

Under category 1.A.3.d ii - National Navigation emissions from national navigation (both inland and maritime) are reported.

Category Code Method AD EF
1.A.3.d ii T1, T2, T3 NS, M CS, D, M
NOx NMVOC SO2 NH3 PM2.5 PM10 TSP BC CO PB Cd Hg Diox PAH HCB
Key Category: L/- -/- -/- -/- L/T -/T -/- -/- -/- -/- -/- -/- -/- -/- -/-

Click to view Legend

Click to hide Legend

T = key source by Trend L = key source by Level

Methods
D Default
T1 Tier 1 / Simple Methodology *
T2 Tier 2*
T3 Tier 3 / Detailed Methodology *
C CORINAIR
CS Country Specific
M Model
* as described in the EMEP/EEA Emission Inventory Guidebook - 2019, in the group specific chapters.
AD - Data Source for Activity Data
NS National Statistics
RS Regional Statistics
IS International Statistics
PS Plant Specific data
As Associations, business organisations
Q specific Questionnaires (or surveys)
M Model / Modelled
C Confidential
EF - Emission Factors
D Default (EMEP Guidebook)
C Confidential
CS Country Specific
PS Plant Specific data
M Model / Modelled

Methodology

Activity data

As described for the over-all sector 1.A.3.d and all other navigational activities in the superordinate chapter, specific fuel consumption data for NFR 1.A.3.d ii is included in the primary fuel deliveries data provided in NEB lines 6 ('International Maritime Bunkers') and 64 ('Coastal and Inland Navigation') 1).

Here, the annual fuel consumption for domestic maritime navigation are modelled within 2) based on AIS data and deduced from NEB lines 6 and 64 respectively, depending on whether or not a certain ship is registered by the International Maritime Organization (IMO). Here, fuels consumed by large, IMO-registered and sea-going ships and vessels are included in NEB line 6 whereas fuels consumed by smaller ships without IMO-registration are included in NEB line 64. After these deductions, the amounts of fuels remaining in NEB 64 are allocated to domestic inland navigation.

The small amounts of LNG used almost entirely in ferries are not yet included in the NEB but are estimated directly in the BSH model.

Table 1: Annual over-all fuel consumption for domestic navigation, in terajoule

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Diesel Oil 37,199 30,389 19,231 19,250 16,872 17,719 17,411 17,768 18,878 22,301 20,466 19,110 20,064 20,756 18,416 18,955
Heavy fuel oil 3,103 2,186 2,382 2,054 1,810 1,790 1,932 2,134 2,057 108 37,0 81,1 262 394 368 392
LNG 0 0 0 0 0 0 0 0 17 22 64 59 197 153 276 293
Ʃ 1.A.3.d ii 40,303 32,575 21,613 21,304 18,682 19,509 19,343 19,902 20,952 22,431 20,567 19,250 20,524 21,303 19,060 19,640

Table 2: Specific fuel consumption data for domestic maritime and inland navigation, in terajoule

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
NATIONAL MARITIME NAVIGATION
Diesel Oil 9,484 6,828 7,367 6,399 5,690 5,669 6,089 6,133 6,766 8,980 9,335 8,960 9,445 9,497 8,339 8,475
Heavy fuel oil 3,103 2,186 2,382 2,054 1,810 1,790 1,932 2,134 2,057 108,0 37,0 81,1 262 394 368 392
LNG 0 0 0 0 0 0 0 0 17 22 64 59 197 153 276 293
NATIONAL INLAND NAVIGATION
Diesel Oil 27,716 23,562 11,864 12,851 11,182 12,050 11,322 11,635 12,112 13,321 11,131 10,150 10,619 11,259 10,076 10,481
Ʃ 1.A.3.d ii 40,303 32,575 21,613 21,304 18,682 19,509 19,343 19,902 20,952 22,431 20,567 19,250 20,524 21,303 19,060 19,640

Emission factors

The emission factors applied for national maritime navigation are derived from different sources and therefore are of very different quality.

For the main pollutants, country-specific implied values are used, that are based on tier3 EF included in the BSH model 3) which mainly relate on values from the EMEP/EEA guidebook 2019 4). These modelled IEFs take into account the ship specific information derived from AIS data as well as the mix of fuel-qualities applied depending on the type of ship and the current state of activity.

Here, for sulphur dioxide and particulate matter, annual values are available representing the impact of fuel sulphur legislation. In addition, regarding 2, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.

Table 3: Country-specific emission factors applied for fuels used in domestic maritime navigation, in [kg/TJ]

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
DIESEL OIL
NH3 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
NMVOC 48.5 48.4 48.4 48.4 48.4 48.4 48.4 47.7 44.9 44.4 43.9 44.2 43.8 44.0 44.0 42.1
NOx 1,101 1,101 1,101 1,101 1,101 1,101 1,119 1,126 1,155 1,184 1,183 1,189 1,200 1,199 1,169 1,194
SO2 466 419 233 186 69.8 65.2 54.8 52.9 51.1 37.2 37.2 37.2 37.2 37.2 37.2 37.2
BC1 110 99.1 55.0 44.0 16.5 15.5 15.4 15.3 15.3 17.4 17.7 17.7 17.3 17.5 16.8 16.9
PM2.5 354 320 177 142 53.3 49.9 49.8 49.3 49.4 56.2 57.1 57.1 55.9 56.5 54.2 54.6
PM10 378 342 190 152 57.1 53.4 53.3 52.7 52.9 60.1 61.1 61.1 59.8 60.4 58.0 58.5
TSP2 378 342 190 152 57.1 53.4 53.3 52.7 52.9 60.1 61.1 61.1 59.8 60.4 58.0 58.5
CO 128 128 128 128 128 129 128 128 130 140 142 141 139 140 138 140
HEAVY FUEL OIL
NH3 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
NMVOC 43.0 42.8 42.9 42.9 42.8 42.7 42.8 41.6 42.3 26.1 30.2 33.7 32.5 32.7 37.4 37.5
NOx 1,368 1,368 1,368 1,368 1,368 1,367 1,367 1,384 1,433 1,487 1,440 1,479 1,480 1,507 1,509 1,526
SOx 1,319 1,332 1,323 1,336 496 496 496 495 506 48.6 49.2 48.1 45.9 46.5 48.1 47.0
BC1 70.8 71.2 70.8 71.6 26.5 26.5 26.5 25.6 25.6 14.2 18.0 20.1 19.1 18.9 21.4 21.3
PM2.5 590 594 590 596 221 221 221 213 213 118 150 168 159 158 179 178
PM10 649 653 649 656 243 243 243 234 235 130 165 184 175 173 197 195
TSP2 649 653 649 656 243 243 243 234 235 130 165 184 175 173 197 195
CO 179 179 179 179 179 179 179 175 173 144 162 157 156 150 151 147

1 estimated from f-BCs as provided in 5): f-BC (HFO) = 0.12, f-BC (MDO/MGO) = 0.31 as provided in 6), chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2
2 ratio of PM2.5 : PM10 : TSP derived from the tier1 default EF as provided in 7), chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2

For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

For main pollutants and particulate matter from national inland navigation, modelled emission factors are available from TREMOD (Knörr et al. (2022a)) 8). Here, for SO2, and PM, annual values reflect the impact of fuel-sulphur legislation.

Table 4: Country-specific emission factors for diesel fuels used in domestic inland navigation, in [kg/TJ]

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
NH3 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
NMVOC 96.4 87.9 77.7 72.3 67.1 66.0 64.7 63.7 62.7 61.5 60.6 59.7 58.7 58.0 57.1 56.4
NOx 1,327 1,331 1,336 1,289 1,234 1,225 1,212 1,201 1,190 1,177 1,166 1,154 1,143 1,134 1,123 1,114
SOx 85.2 60.5 60.5 60.5 60.5 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
BC1 17.5 16.0 14.1 11.8 9.29 9.09 8.84 8.63 8.45 8.24 8.08 7.91 7.74 7.62 7.47 7.35
PM2 56.5 51.7 45.6 38.1 30.0 29.3 28.5 27.8 27.3 26.6 26.1 25.5 25.0 24.6 24.1 23.7
CO 417 387 337 299 259 254 248 242 237 232 227 223 218 215 210 207

1 calculated from f-BC as provided in 9), Chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii, Table 3-2: f-BC (MDO/MGO) = 0.31
2 EF(PM2.5) also applied for PM10 and TSP (assumption: > 99% of TSP from diesel oil combustion consists of PM2.5)

With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.

Table 5: Outcome of Key Category Analysis

for: PM10 PM2.5
by: L/T L/T

For ammonia, NMVOC, and nitrogen oxides as well as carbon monoxide, emission trends more or less represent the trend in over-all fuel consumption.

 Annual ammonia emissions

 Annual NMVOC emissions

 Annual nitrogen oxides emissions

Nonetheless, for these pollutants, annual emission factors from BSH 10) and TREMOD 11) have been applied for national maritime and inland navigation, respectively, reflecting the technical development of the German inland navigation fleet.

Here, the trends in sulphur dioxide and particulate matter emissions reflect the impact of ongoing fuel-sulphur legislation especially in maritime navigation.

 Annual sulphur oxides emissions  Annual particulate matter emissions

Recalculations

Rëstimated emission estimates result solely from revised activity data result from the revision of the National Energy Balance 2020. Furthermore, the use of LNG is reported for the first time, starting in 2015.

Table 6: Revised over-all fuel consumption data for national navigation, in terajoules

2015 2016 2017 2018 2019 2020
Diesel oil
current submission 22.301 20.466 19.110 20.064 20.756 18.416
previous submission 22.301 20.466 19.110 20.064 20.756 18.417
absolute change 0,00 0,00 0,00 0,00 0,00 -1,29
relative change 0,00% 0,0% 0,0% 0,0% 0,00% 0,0%
Heavy fuel oil
current submission 108 37,0 81,1 262 394 368
previous submission 108,0 37,02 81,10 262 394 368
absolute change 0,00 0,00 0,00 0,00 0,00 0,00
relative change 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Liquefied Natural Gas - LNG
current submission 22 64 59 197 153 276
previous submission NE NE NE NE NE NE
absolute change 22,0 64,4 58,8 197 153 276
OVER-ALL FUEL CONSUMPTION
current submission 22.431 20.567 19.250 20.524 21.303 19.060
previous submission 22.409 20.503 19.191 20.326 21.150 18.785
absolute change 22,0 64,4 58,8 197 153 274
relative change 0,1% 0,3% 0,3% 1,0% 0,72% 1,46%

In cotrast, all country-specific emission factors remain unaltered.

For pollutant-specific information on recalculated emission estimates for Base Year and 2020, please see the recalculation tables following chapter 8.1 - Recalculations.

Uncertainties

Uncertainty estimates for activity data of mobile sources derive from research project FKZ 360 16 023: “Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland” by Knörr et al. (2009) 12).

Planned improvements

Besides the routine revisions of the models used for maritime and inland navigation, no specific improvements are scheduled.


1) AGEB, 2022: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, (Aufruf: 23.11.2021), Köln & Berlin, 2022
3), 10) Deichnik (2021): Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH - Federal Maritime and Hydrographic Agency); Hamburg, 2022.
4), 5), 6), 7), 9) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.
8), 11) Knörr et al. (2021a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2022.
12) Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.