meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:transport:railways:start [2024/02/28 09:27] – [Short description] kotzullasector:energy:fuel_combustion:transport:railways:start [2025/04/16 21:11] (current) kotzulla
Line 1: Line 1:
 ====== 1.A.3.c - Transport: Railways ====== ====== 1.A.3.c - Transport: Railways ======
 +
 +<WRAP center round download right 20%>
 +{{sector:energy:fuel_combustion:transport:railways:iir-data_1.a.3.c_1990-2023_public.xlsx | NFR-specific inventory data }} 
 +</WRAP>
  
 ===== Short description ===== ===== Short description =====
Line 5: Line 9:
 In category //1.A.3.c - Railways//, emissions from fuel combustion in German railways and from the related abrasion and wear of contact line, braking systems and tyres on rails are reported.  In category //1.A.3.c - Railways//, emissions from fuel combustion in German railways and from the related abrasion and wear of contact line, braking systems and tyres on rails are reported. 
  
-^ Category Code   Method ^  AD   ^  EF  | + Category Code                            Method ^  AD     ^  EF        ^ 
-| 1.A.3.c        |  T1, T2 |  NS, M |  CS, D, M   + 1.A.3.c                                |  T1, T2  |  NS, M  |  CS, D, M  
-| {{page>general:Misc:LegendEIT:start}} ||||+ {{page>general:Misc:LegendEIT:start}}                                 ||||
  
 +\\
  
-^ NO<sub>x</sub> ^  NMVOC  ^  SO<sub>2</sub>  ^  NH<sub>3</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP  ^  BC    CO    Pb    Cd    Hg    As    Cr    Cu    Ni    Se    Zn    PCDD/ ^  B(a)P  ^  B(b)F  ^  B(k)F  ^  I(x)P  ^  PAH1-4   HCB   PCBs  | + NO<sub>x</sub>                         ^  NMVOC  ^  SO<sub>2</sub>  ^  NH<sub>3</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP  ^  BC    CO    Pb    Cd    Hg    As    Cr    Cu    Ni    Se    Zn    PCDD/ ^  B(a)P  ^  B(b)F  ^  B(k)F  ^  I(x)P  ^  PAH1-4   HCB   PCBs  ^ 
-|  -/-  |  -/-    |  -/-   |  -/-      |  -/-  |  -/-  |  L/-  |  L/  L/-  |  -/-  |  -/-  |  -/-  |  -/-   -/-   -/-   -/  -/-  |  -/-  |  -/-      -/-    |  -/-    |  -/-    |  -/-    |  -/-       -/-      -/-     |+|  -/-                                    |  -/-    |  -/-             |  -/-             ^  L/T               |  -/-              |  -/-  |  -/-  |  -/-  |  -/-  |  -/-  |  -/-  |  -/-   L/-   L/-   L/  -/-  |  -/-  |  -/-      -/-    |  -/-    |  -/-    |  -/-    |  -/-      -/-   -/-   |
 |  {{page>general:Misc:LegendKCA:start}}                                                                                                                                                                                                                                                 |||||||||||||||||||||||||| |  {{page>general:Misc:LegendKCA:start}}                                                                                                                                                                                                                                                 ||||||||||||||||||||||||||
 +\\
  
 Germany's railway sector is undergoing a long-term modernisation process aimed at making electricity the main energy source for rail transports. Use of electricity, instead of diesel fuel, to power locomotives has been continually increased, and electricity now provides over 80% of all railway traction power. Railways' power stations for generation of traction current are allocated to the stationary component of the energy sector (1.A.1.a) and are not included in the following. In energy input for trains of German railways, diesel fuel is the only energy source that plays a significant role apart from electric power.  Germany's railway sector is undergoing a long-term modernisation process aimed at making electricity the main energy source for rail transports. Use of electricity, instead of diesel fuel, to power locomotives has been continually increased, and electricity now provides over 80% of all railway traction power. Railways' power stations for generation of traction current are allocated to the stationary component of the energy sector (1.A.1.a) and are not included in the following. In energy input for trains of German railways, diesel fuel is the only energy source that plays a significant role apart from electric power. 
Line 20: Line 26:
 === Activity Data === === Activity Data ===
  
-Basically, total inland deliveries of //diesel oil// are available from the National Energy Balances (NEBs) (AGEB, 2023) [(AGEB2023)]. This data is based upon sales data of the Association of the German Petroleum Industry (MWV) [(MWV2021)]. As a recent revision of MWV data on diesel oil sales for the years 2005 to 2009 has not yet been adopted to the respective NEBsthis original MWV data has been used for this five years. +Generally, total inland deliveries of //diesel oil// are available from the National Energy Balances (NEBs) (AGEB, 2024) [(AGEB2024)].  
 +This data is based upon sales data of the Association of the German Petroleum Industry (MWV) [(MWV2021)]. As a revision of this MWV data for the years 2005 to 2009 was not adopted to the respective National Energy Balancesthe original MWV data are applied for this five years. 
  
-Data on the consumption of biodiesel in railways is provided in the NEBs as well, from 2004 onward. But as the NEBs do not provide a solid time series regarding most recent years, the data used for the inventory is estimated based on the prescribed shares of biodiesel to be added to diesel oil. +Data on the consumption of biodiesel in railways is provided in the NEBs as well, from 2004 onward. However, the data applied in the emissions inventory are based on the average annual shares of biodiesel added to the fossil diesel oil. 
  
-Small quantities of //solid fuels// are used for historical steam engines vehicles operated mostly for tourism and exhibition purposes. Official fuel delivery data are available for lignite, through 2002, and for hard coal, through 2000, from the NEBsIn order to complete these time series, studies were carried out in 2012 [(HEDEL2012)], 2016 [(ILLICHMANN2016)] and 2021 [(HASENBALG2021)]. During these studiesquestionaires were provided to any known operator of historical steam engines in Germany. Here, due to limited data archiving, nearly complete data could only be gained for years as of 2005. For earlier years, in order to achieve solid time series, conservative gap filling was applied. +In addition, rather small quantities of //solid fuels// are used for historical steam engines vehicles operated mostly for tourism and exhibition purposes. Official fuel delivery data are available for lignite, through 2002, and for hard coal, through 2000 onlyTherefore, in order to complete these time series, operator surveys were carried out in 2012 [(HEDEL2012)], 2016 [(ILLICHMANN2016)] and 2021 [(HASENBALG2021)]. During these surveysquestionnaires were provided to any known operator of historical steam engines in Germany. Here, due to limited data archiving, nearly complete data could only be gained for years as of 2005 and for the main operators only. For earlier years and variety of smaller operators, conservative gap filling was applied.  
 +\\
  
 __Table 1: Overview of activity-data sources for domestic fuel sales to railway operators__ __Table 1: Overview of activity-data sources for domestic fuel sales to railway operators__
Line 38: Line 46:
 | transport performance data                                                  | in Mio ptkm (performance-ton-kilometers) derived from the TREMOD model                                                                                        | | transport performance data                                                  | in Mio ptkm (performance-ton-kilometers) derived from the TREMOD model                                                                                        |
  
 +\\
 __Table 2: Annual fuel consumption in German railways, in terajoules__ __Table 2: Annual fuel consumption in German railways, in terajoules__
-|                          1990    1995    2000    2005    2010    2015    2016    2017    2018    2019    2020    2021    2022   ^ +|                          1990    1995    2000    2005    2010    2015    2016    2017    2018    2019    2020    2021    2022   ^  2023   ^ 
-| **Diesel Oil**          |  38,605 |  31,054 |  25,410 |  18,877 |  14,626 |  13,321 |  13,775 |  11,344 |   9,425 |  10,747 |  10,782 |  11,072 |  10,464 +| **Diesel Oil**          |  38,605 |  31,054 |  25,410 |  18,877 |  14,626 |  13,321 |  13,775 |  11,344 |   9,425 |  10,747 |  10,782 |  11,072 |  10,482 |  10,039 
-| **Biodiesel**                                   |     434 |     976 |     738 |     745 |     618 |     532 |     610 |     882 |     776 |     727 | +| **Biodiesel**           0       0       0       |     434 |     976 |     738 |     745 |     618 |     532 |     610 |     882 |     776 |     727 |     744 
-^ Liquids TOTAL            38,605 ^  31,054 ^  25,410 ^  19,311 ^  15,602 ^  14,059 ^  14,520 ^  11,962 ^   9,957 ^  11,357 ^  11,664 ^  11,848 ^  11,191 +^ Liquids TOTAL            38,605 ^  31,054 ^  25,410 ^  19,311 ^  15,602 ^  14,059 ^  14,520 ^  11,962 ^   9,957 ^  11,357 ^  11,664 ^  11,848 ^  11,210 ^  10,783 
-| **Lignite Briquettes**  |     200 |      86 |    1.33 |    0.79 |    0.79 |    0.66 |    0.63 |    0.46 |    0.46 |    0.43 |    0.22 |    0.35 |    0.35 | +| **Lignite Briquettes**  |     200 |      86 |    1.33 |    0.79 |    0.79 |    0.66 |    0.63 |    0.46 |    0.46 |    0.43 |    0.22 |    0.35 |    0.35 |    0.35 | 
-| **Hard Coal**               576 |     232 |     223 |     267 |     324 |     351 |     361 |     367 |     365 |     362 |     306 |     325 |     325 | +| **Hard Coal**               576 |     232 |     223 |     267 |     324 |     351 |     361 |     367 |     365 |     362 |     306 |     325 |     325 |     325 | 
-| **Hard Coal Coke**      |   2,000 |   1,309 |     431 |    14.6 |    7.32 |    0.02 |    1.19 |    1.21 |    1.20 |    1.20 |    1.12 |    1.15 |    1.15 | +| **Hard Coal Coke**      |   2,000 |   1,309 |     431 |    14.6 |    7.32 |    0.02 |    1.19 |    1.21 |    1.20 |    1.20 |    1.12 |    1.15 |    1.15 |    1.15 | 
-^ Solids TOTAL            ^   2,776 ^   1,627 ^     655 ^     283 ^     332 ^     352 ^     363 ^     368 ^     367 ^     363 ^     308 ^     327 ^     327 ^ +^ Solids TOTAL            ^   2,776 ^   1,627 ^     655 ^     283 ^     332 ^     352 ^     363 ^     368 ^     367 ^     363 ^     308 ^     327 ^     327 ^     327 ^ 
-^ Ʃ 1.A.3.c                41,381 ^  32,681 ^  26,065 ^  19,594 ^  15,934 ^  14,411 ^  14,883 ^  12,331 ^  10,324 ^  11,720 ^  11,972 ^  12,175 ^  11,518 ^+^ Ʃ 1.A.3.c                41,381 ^  32,681 ^  26,065 ^  19,594 ^  15,934 ^  14,411 ^  14,883 ^  12,331 ^  10,324 ^  11,720 ^  11,972 ^  12,175 ^  11,536  11,110 ^ 
 +\\
  
 The use of other fuels – such as vegetable oils or gas – in private narrow-gauge railway vehicles has not been included to date and may still be considered negligible.  The use of other fuels – such as vegetable oils or gas – in private narrow-gauge railway vehicles has not been included to date and may still be considered negligible. 
-    + 
 +{{:sector:energy:fuel_combustion:transport:railways:1a3c_ad_liquid.png?800|Annual energy input from liquid fuels}} 
 +{{:sector:energy:fuel_combustion:transport:railways:1a3c_ad_solid.png?800 |Annual energy input from solid fuels}} 
 + 
 +\\    
 __Table 3: Annual transport performance by mode of traction, in Mio tkm (ton-kilometers)__ __Table 3: Annual transport performance by mode of traction, in Mio tkm (ton-kilometers)__
-|                1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^  2020    ^  2021    ^  2022    ^ +|                1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^  2020    ^  2021    ^  2022     2023    ^ 
-| **Diesel**    |   98,812 |   58,805 |   37,237 |   26,540 |   26,702 |   21,397 |   21,484 |   21,365 |   19,580 |   18,058 |   16,917 |   23,028 |   22,733 | +| **Diesel**    |   98,812 |   58,805 |   37,237 |   26,540 |   26,702 |   21,397 |   21,484 |   21,365 |   19,580 |   18,058 |   16,917 |   23,028 |   22,733 |   21,028 
-| **Electric**  |  361,515 |  337,853 |  361,633 |  356,605 |  344,546 |  323,387 |  295,798 |  296,280 |  288,336 |  281,130 |  262,268 |  277,395 |  288,761 | +| **Electric**  |  361,515 |  337,853 |  361,633 |  356,605 |  344,546 |  323,387 |  295,798 |  296,280 |  288,336 |  281,130 |  262,268 |  277,395 |  288,761 |  278,660 
-^ Ʃ 1.A.3.c      460,326 ^  396,658 ^  398,870 ^  383,145 ^  371,248 ^  344,785 ^  317,282 ^  317,645 ^  307,916 ^  299,188 ^  279,184 ^  300,423 ^  311,494 ^+^ Ʃ 1.A.3.c      460,326 ^  396,658 ^  398,870 ^  383,145 ^  371,248 ^  344,785 ^  317,282 ^  317,645 ^  307,916 ^  299,188 ^  279,184 ^  300,423 ^  311,494 ^  299,688 ^ 
 +\\ 
 + 
 +{{:sector:energy:fuel_combustion:transport:railways:1a3c_ad(km).png?800| Annual mileage in Mio kilometers and for both diesel and electric traction}} 
  
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_ad_liquid.png?700 |Annual energy input from liquid fuels }} +Transport performance showed only a moderate pandemic-related decrease in 2020 and has fully recovered in 2021 and 2022.
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_ad_solid.png?700 |Annual energy input from solid fuels }}+
  
-Regarding particulate-matter and heavy-metal emissions from **abrasion and wear of contact line, braking systems, tyres on rails**, annual transport performances of railway vehicles with electrical and Diesel traction derived from Knörr et al. (2023a) [(KNOERR2023a)] are applied as activity data. +Regarding particulate-matter and heavy-metal emissions from **abrasion and wear of contact line, braking systems, tyres on rails**, annual transport performances of railway vehicles with electrical and Diesel traction derived from Knörr et al. (2024a) [(KNOERR2024a)] are applied as activity data. 
  
 ==== Emission factors ==== ==== Emission factors ====
Line 80: Line 97:
  
 __Table 3: Annual country-specific emission factors for diesel fuels<sup>1</sup>, in kg/TJ__ __Table 3: Annual country-specific emission factors for diesel fuels<sup>1</sup>, in kg/TJ__
-|                  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^ 2019  ^ 2020  ^  2021  ^  2022  ^ +|                  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^ 2019  ^ 2020  ^  2021  ^  2022   2023  ^ 
-^ NH<sub>3</sub>  |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |  0.54 |  0.54 |   0.54 |   0.54 | +^ NH<sub>3</sub>  |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |   0.54 |  0.54 |  0.54 |   0.54 |   0.54 |   0.54 | 
-^ NMVOC              109 |    100 |   90.2 |   64.8 |   52.0 |   39.2 |   39.|   37.|   36.|  36.|  37.|   37.|   34.+^ NMVOC              109 |    100 |   90.2 |   64.8 |   52.0 |   39.2 |   39.|   38.|   37.|  36.|  38.|   37.|   34.9 |   33.5 
-^ NO<sub>x</sub>  |  1,170 |  1,207 |  1,225 |  1,111 |    970 |    826 |    802 |    776 |    749 |   707 |   741 |    744 |    697 | +^ NO<sub>x</sub>  |  1,170 |  1,207 |  1,225 |  1,111 |    970 |    826 |    803 |    776 |    750 |   708 |   742 |    745 |    697 |    679 
-^ SO<sub>x</sub>  |    196 |   60.5 |   14.1 |   0.32 |   0.32 |   0.32 |   0.33 |   0.33 |   0.33 |  0.33 |  0.33 |   0.33 |   0.33 | +^ SO<sub>x</sub>  |    196 |   60.5 |   14.1 |   0.32 |   0.32 |   0.32 |   0.33 |   0.33 |   0.33 |  0.33 |  0.33 |   0.33 |   0.33 |   0.33 | 
-^ PM<sup>2</sup>  |   44.|   43.|   36.|   23.|   17.|   13.|   13.|   12.|   11.|  11.|  12.|   12.|   11.+^ PM<sup>2</sup>  |   28.|   28.|   23.|   15.|   11.|   8.67 |   8.54 |   8.05 |   7.71 |  7.44 |  7.95 |   7.97 |   7.30 |   6.95 
-^ BC<sup>3</sup>  |   28.|   28.|   23.|   15.|   11.|   8.67 |   8.52 |   8.05 |   7.70 |  7.40 |  7.90 |   7.94 |   7.27 +^ BC<sup>3</sup>  |   44.|   43.|   36.|   23.|   17.|   13.|   13.|   12.|   11.|  11.|  12.|   12.|   11.2 |   10.7 
-^ CO              |    287 |    292 |    255 |    162 |    121 |   95.8 |   94.|   93.|   90.|  89.|  90.|   90.|   87.5 |+^ CO              |    287 |    292 |    255 |    162 |    121 |   95.8 |   95.|   94.|   91.|  90.|  90.|   90.|   87.7 |   86.5 |
 <sup>1</sup> due to lack of better information: similar EF are applied for fossil diesel oil and biodiesel \\ <sup>1</sup> due to lack of better information: similar EF are applied for fossil diesel oil and biodiesel \\
 <sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub> and TSP (assumption: >99% of TSP consists of PM<sub>2.5</sub>)\\ <sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub> and TSP (assumption: >99% of TSP consists of PM<sub>2.5</sub>)\\
-<sup>3</sup> EFs calculated via f-BCs as provided in [((bibcite 6))]: diesel fuels: 0.56 (Chapter: 1.A.3.c - Railways, Appendix A: tier1), solid fuels: 0.064 (Chapter: 1.A.4 - Small Combustion: Residential combustion (1.A.4.b): Table 3-3, Zhang et al., 2012)+<sup>3</sup> EFs calculated via f-BCs as provided in [((bibcite 6))]Chapter: 1.A.3.c - Railways, Appendix A: tier1: diesel fuels: f-BC=0.56
  
 __Table 4: Emission factors applied for solid fuels, in kg/TJ__ __Table 4: Emission factors applied for solid fuels, in kg/TJ__
-^                      NH<sub>3</sub>  ^  NMVOC  ^  NO<sub>x</sub>  ^  SO<sub>x</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP  ^  BC   ^  CO    +^                      NH<sub>3</sub>  ^  NMVOC  ^  NO<sub>x</sub>  ^  SO<sub>x</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP   ^  BC<sup>1</sup>    ^  CO     
-| **Hard coal**                   4.00 |    15.0 |              120 |              650 |                222               250 |   278 |  14.2 |    500 | +| **Hard coal**        4.00             15.0    120              650              222               |  250               278   |  14.2   500    
-| **Hard coal coke**             4.00 |    0.50 |              120 |              500 |               15.0              15.0 |  15.0 |  0.96 |  1,000 |+| **Hard coal coke**  4.00             0.50    120              500              15.0              |  15.0             |  15.0  |  0.96  |  1,000  | 
 +<sup>1</sup> EFs calculated via f-BCs as provided in [((bibcite 6))], Chapter: 1.A.4 - Small Combustion: Residential combustion (1.A.4.b): Table 3-3, Zhang et al., 2012): f-BC=0.064 
 +\\
  
-__Table 5: Country-specific emission factors for abrasive emissions, in g/km__+__Table 5: Country-specific emission factors for abrasive emissions, in [g/performance-tonnes km] and for 2022__
 ^                                  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP      BC  ^  Pb  ^  Cd  ^  Hg  ^  As  ^  Cr      ^  Cu      ^  Ni      ^  Se  ^  Zn  ^ ^                                  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP      BC  ^  Pb  ^  Cd  ^  Hg  ^  As  ^  Cr      ^  Cu      ^  Ni      ^  Se  ^  Zn  ^
-^ Contact line <sup>1</sup>                  0.00016 |           0.00032 |  0.00032 |  NA  |  NA  |  NA  |  NA  |  NA  |  NA      |  0.00033 |  NA      |  NA  |  NA  | +^ Contact line <sup>1</sup>                  0.00018 |           0.00036 |  0.00036 |  NA  |  NA  |  NA  |  NA  |  NA  |  NA      |  0.00033 |  NA      |  NA  |  NA  | 
-^ Tyres on rails <sup>2</sup>                  0.009 |             0.018 |    0.018 |  NA  |  NA                                                              |||||||||+^ Tyres on rails <sup>2</sup>                  0.010 |             0.020 |    0.020 |  NA  |  NA                                                              |||||||||
 ^ Braking system <sup>3</sup>                  0.004 |             0.008 |    0.008 |  NA  |  NA  |  NA  |  NA  |  NA  |  0.00008 |  NA      |  0.00016 |  NA  |  NA  | ^ Braking system <sup>3</sup>                  0.004 |             0.008 |    0.008 |  NA  |  NA  |  NA  |  NA  |  NA  |  0.00008 |  NA      |  0.00016 |  NA  |  NA  |
 ^ Current collector <sup>4</sup>  |  NE                |  NE                NE      |  NE  |  NA                                                              ||||||||| ^ Current collector <sup>4</sup>  |  NE                |  NE                NE      |  NE  |  NA                                                              |||||||||
Line 120: Line 139:
    
 __Table 6: Outcome of Key Category Analysis__ __Table 6: Outcome of Key Category Analysis__
-|  for: ^  TSP    ^  PM<sub>10</sub>  ^  PM<sub>2.5</sub> +|  for: ^  TSP  ^  PM<sub>10</sub>  ^  PM<sub>2.5</sub> 
-|   by:  Level   L/              L/              |+|   by:  L/-   L/              L/              
 +\\
  
 Basically, for all unregulated pollutants, emission trends directly follow the trend in over-all fuel consumption. Basically, for all unregulated pollutants, emission trends directly follow the trend in over-all fuel consumption.
Line 128: Line 148:
 Therefore, for the **main pollutants**, **carbon monoxide**, **particulate matter** and **PAHs**, emission trends show remarkable jumps especially after 1995 that result from the significantly higher amounts of solid fuels used. Therefore, for the **main pollutants**, **carbon monoxide**, **particulate matter** and **PAHs**, emission trends show remarkable jumps especially after 1995 that result from the significantly higher amounts of solid fuels used.
  
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_nh3.png?700 |Annual ammonia emissions }} +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_nh3.png?800 |Annual ammonia emissions from railways }} 
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_nox.png?700 |Annual notrogen oxides emissions }}+{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_nox.png?800 |Annual notrogen oxides emissions from railways }}
  
 +
 +\\
 For all fractions of **particulate matter**, the majority of emissions generally result from abrasion and wear and the combustion of diesel fuels. Additional jumps in the over-all trend result from the use of lignite briquettes (1996-2001). Here, as the EF(BC) for fuel combustion are estimated via fractions provided in [(EMEPEEA2019)], black carbon emissions follow the corresponding emissions of PM<sub>2.5</sub> For all fractions of **particulate matter**, the majority of emissions generally result from abrasion and wear and the combustion of diesel fuels. Additional jumps in the over-all trend result from the use of lignite briquettes (1996-2001). Here, as the EF(BC) for fuel combustion are estimated via fractions provided in [(EMEPEEA2019)], black carbon emissions follow the corresponding emissions of PM<sub>2.5</sub>
  
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_pm.png?700 |Annual particulate matter emissions }} +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_pm.png?800 |Annual particulate matter emissions from railways }} 
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_pm10.png?700 |Annual PM10 emissions }} +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_pm10.png?800 |Annual PM10 emissions from railways }} 
 +\\
 Due to fuel-sulphur legislation, the trend of **sulphur dioxide** emissions follows not only the trend in fuel consumption but also reflects the impact of regulated fuel-qualities. Due to fuel-sulphur legislation, the trend of **sulphur dioxide** emissions follows not only the trend in fuel consumption but also reflects the impact of regulated fuel-qualities.
 For the years as of 2005, sulphur emissions from diesel combustion have decreased so strongly, that the over-all trend shows a slight increase again due to the now dominating contribution of sulphur from the use of solid fuels. For the years as of 2005, sulphur emissions from diesel combustion have decreased so strongly, that the over-all trend shows a slight increase again due to the now dominating contribution of sulphur from the use of solid fuels.
  
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_so2.png?700 |Annual sulphur oxides emissions }}+{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_so2.png?800 |Annual sulphur oxides emissions from railways}}
  
 +\\
 Regarding **heavy metals**, emissions from combustion of diesel oil and from abrasion and wear are estimated from tier1 default emission factors.  Regarding **heavy metals**, emissions from combustion of diesel oil and from abrasion and wear are estimated from tier1 default emission factors. 
 Therefore, the emission trends reflect the development of diesel use and - for copper, chromium and nickel emissions resulting from the abrasion & wear of contact line and braking systems - the annual transport performance (see description of activity data above). Therefore, the emission trends reflect the development of diesel use and - for copper, chromium and nickel emissions resulting from the abrasion & wear of contact line and braking systems - the annual transport performance (see description of activity data above).
  
-{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_cu.png?700 |Annual copper emissions }}+{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_cu.png?800 |Annual copper emissions from railways}}
  
 \\ \\
Line 150: Line 173:
 ===== Recalculations ===== ===== Recalculations =====
  
-**Activity data** have been recalculated widely due to the revision of the National Energy Balances (NEB) 2003 to 2021. In addition, for 1990, the (erroneous) value applied so far has been replaced with the original NEB value.+**Activity data** have been recalculated only due to the finalization of the National Energy Balances 2022
  
-__Table 5: Revised fuel consumption data 2020, in terajoule__ +__Table 5: Revised fuel consumption data 2022, in terajoule__ 
-|                      ^  1990    1995   ^  2000   ^  2005   ^  2010   ^  2015   ^  2016    2017    2018    2019    2020    2021   ^ +|                      ^  DIESEL OIL  BIODIESEL  RAW LIGNITE  LIGN. BRIQU.  COKE OVEN COKE  BITUMIN. COAL    | **TOTAL**  | 
-^ current submission    41,381 |  32,681 |  26,065 |  19,594 |  15,934 |  14,411 |  14,883  12,331 |  10,324 |  11,720 |  11,972 |  12,175 | +^ current submission         10.482 |  727       |  0           |  1.15         |  0.35           |  325             ^ 11,536     ^ 
-^ previous submission  41,234 |  32,681 |  26,065 |  18,826 |  15,915 |  14,400 |  14,867  12,318 |  10,340 |  11,722 |  11,985 |  12,168 | +^ previous submission       10.464 |  727       |  0           |  1.15         |  0.35           |  325             ^ 11,518     ^ 
-^ absolute change      |     147       0 |       |     768 |    19.   11.   16.   12.|   -16.1 |   -2.51 |   -13.6 |    7.23 | +^ absolute change      |         18.2  0.01       0.00         0.00          0.00            0.00          |   ^ 18.2       ^ 
-^ relative change      |   0.36% |   0.00% |   0.00% |   4.08% |   0.12% |   0.08% |   0.11% |   0.10% |  -0.16% |  -0.02% |  -0.11% |   0.06|+^ relative change      |        0.17% |  0.002    0.00%       |  0.00       |  0.00         |  0.00        |   0.16     ^ 
 +\\
  
-Furthermore, due to the routine revision of the TREMOD model [(KNOERR2023a)], tier2 **emission factors** changed for recent years. +Furthermore, due to the routine revision of the TREMOD model [(KNOERR2024a)], tier2 **emission factors** changed for recent years. 
  
-In addition, the transport performance data as activity data for the estimation of abrasive emissions from current line, wheels and brakes have been revised for more recent years:+In addition, abrasive PM<sub>10</sub> emissions as derived from a model hosted at the DB AG have been revised. Here, especially the emission factors for PM<sub>10</sub> emissions from the abrasion of tyre on rail and gray cast iron brakes were reduced significantly due to most recent results from a measurement campaign [(DZSF2025)] and for all years:
  
-__Table 7: Revised transport performance data 2017-2021, in [Mio km]__ +__Table 6: Revised abrasive PM<sub>10</sub> emissions, from DB AG, in [kt]__ 
-|                      ^  2017    ^  2018    ^  2019    ^  2020    ^  2021    +|                      ^  1995    2000    2005    2010    2015    2016   ^  2017   ^  2018   ^  2019   ^  2020   ^  2021   ^  2022   
-^ current submission    317,645  307,916  299,188  279,184  300,423 +^ current submission      5.66    4.70    3.84    3.57    3.74 |    3.84 |    3.73 |    3.69 |    3.79 |    3.26 |    3.09 |    3.25 
-^ previous submission  317,282  317,645  307,916  299,188  279,184 +^ previous submission    10.7    9.76    8.70    8.28    8.76 |    8.64 |    8.41 |    8.56 |    8.66 |    8.10 |    8.70 |    8.99 
-^ absolute change      |      363 |   -9,729 |   -8,728  -20,004 |   21,239 +^ absolute change      |   -5.03 |   -5.06 |   -4.86   -4.71 |   -5.01 |   -4.80 |   -4.67 |   -4.88 |   -4.87 |   -4.84 |   -5.61 |   -5.75 
-^ relative change      |    0.11% |   -3.06% |   -2.83% |   -6.69% |    7.61% |+^ relative change      |  -47.1% |  -51.8% |  -55.8% |  -56.9% |  -57.3% |  -55.5% |  -55.6% |  -56.9% |  -56.2% |  -59.8% |  -64.4% |  -63.9% |
  
-Abrasive particulate matter and heavy metal emissions were revised accordingly. +All abrasive particulate matter and heavy metal (Cu, Cr, Ni) emissions estimated based on these original PM<sub>10</sub> emissions were revised accordingly. 
  
 <WRAP center round info 65%> <WRAP center round info 65%>
-For **pollutant-specific information on recalculated emission estimates for Base Year and 2021**, please see the recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].+For **pollutant-specific information on recalculated emission estimates for Base Year and 2022**, please see the recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].
 </WRAP> </WRAP>
  
Line 190: Line 214:
 The EF provided in the 2019 EMEP/EEA Guidebook [(EMEPEEA2019)] represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metals contained in the biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel. The EF provided in the 2019 EMEP/EEA Guidebook [(EMEPEEA2019)] represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metals contained in the biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel.
  
-[(AGEB2023>AGEB, 2023: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; https://ag-energiebilanzen.de/daten-und-fakten/bilanzen-1990-bis-2030/?wpv-jahresbereich-bilanz=2021-2030, (Aufruf: 12.12.2023), Köln & Berlin, 2023)]+ 
 +[(AGEB2024>AGEB, 2024: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland;  
 +https://ag-energiebilanzen.de/wp-content/uploads/2024/03/EBD22e.xlsx, (Aufruf: 04.12.2024), Köln & Berlin, 2024)] 
 +[(BAFA2024>BAFA, 2024: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; 
 +https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2023_12.xlsx?__blob=publicationFile&v=2, Eschborn, 2024.)]
 [(EMEPEEA2023>EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2023, https://www.eea.europa.eu//publications/emep-eea-guidebook-2023, Copenhagen, 2023.)] [(EMEPEEA2023>EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2023, https://www.eea.europa.eu//publications/emep-eea-guidebook-2023, Copenhagen, 2023.)]
 [(MWV2021> MWV (2021): Association of the German Petroleum Industry (Mineralölwirtschaftsverband, MWV): Annual Report 2018, page 65, Table 'Sektoraler Verbrauch von Dieselkraftstoff 2012-2019'; URL: https://www.mwv.de/wp-content/uploads/2020/09/MWV_Mineraloelwirtschaftsverband-e.V.-Jahresbericht-2020-Webversion.pdf, Berlin, 2021.)] [(MWV2021> MWV (2021): Association of the German Petroleum Industry (Mineralölwirtschaftsverband, MWV): Annual Report 2018, page 65, Table 'Sektoraler Verbrauch von Dieselkraftstoff 2012-2019'; URL: https://www.mwv.de/wp-content/uploads/2020/09/MWV_Mineraloelwirtschaftsverband-e.V.-Jahresbericht-2020-Webversion.pdf, Berlin, 2021.)]
Line 196: Line 224:
 [(ILLICHMANN2016>  Illichmann, S. (2016): Recherche des Festbrennstoffeinsatzes historischer Schienenfahrzeuge in Deutschland 2015, Probst & Consorten Marketing-Beratung. Study carried out for UBA; FKZ 363 01 392; not yet published; Dresden, 2016.)] [(ILLICHMANN2016>  Illichmann, S. (2016): Recherche des Festbrennstoffeinsatzes historischer Schienenfahrzeuge in Deutschland 2015, Probst & Consorten Marketing-Beratung. Study carried out for UBA; FKZ 363 01 392; not yet published; Dresden, 2016.)]
 [(HASENBALG2021>  Hasenbalg (2021): Recherche des Festbrennstoffeinsatzes historischer Schienenfahrzeuge in Deutschland 2019 & 2020, Probst & Consorten Marketing-Beratung. Study carried out for UBA; FKZ 363 01 392; not yet published; Dresden, 2021.)] [(HASENBALG2021>  Hasenbalg (2021): Recherche des Festbrennstoffeinsatzes historischer Schienenfahrzeuge in Deutschland 2019 & 2020, Probst & Consorten Marketing-Beratung. Study carried out for UBA; FKZ 363 01 392; not yet published; Dresden, 2021.)]
-[(KNOERR2023a> Knörr et al. (2023a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2022.)] +[(KNOERR2024a> Knörr et al. (2024a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: Fortschreibung des Daten- und Rechenmodells:  
-[(EMEPEEA2019> EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-c-railways/view; Copenhagen, 2019.)+Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg [u.a.] 
-[(RENTZ2008> Rentz et al. (2008): Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs)im Auftrag des UmweltbundesamtesFKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer )]+Ifeu Institut für Energie- und Umweltforschung Heidelberg GmbHHeidelberg & Berlin2024.)]
 [(KNOERR2009> Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)] [(KNOERR2009> Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)]
 +
 +[(EMEPEEA2019> EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-c-railways/view; Copenhagen, 2019.)]
 +[(RENTZ2008> Rentz et al. (2008): Otto Rentz, O., Karl, U., Haase, M., Koch, M., Deutsch-Französisches Institut für Umweltforschung,
 +Universität Karlsruhe (TH): Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), 
 +im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte 01/2008, http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer; Dessau-Roßlau, 2008)]
 +
 +[(DZSF2025> DZSF (Deutsches Zentrum für Schienenverkehrsforschung / German Centre for Rail Traffic Research) research project on "Size-specific and spatial distribution of traffic-related abrasion and particulate emissions" (Größenspezifische und räumliche Verteilung von verkehrsbedingten Abrieben und partikulären Emissionen) https://www.dzsf.bund.de/SharedDocs/Standardartikel/DZSF/Projekte/Projekt_44_Abriebe_Emissionen.html )]