meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:agriculture:agricultural_other:start [2021/02/09 17:40] – [Methodology] doeringsector:agriculture:agricultural_other:start [2022/09/19 07:46] (current) – Fix link hausmann
Line 3: Line 3:
  
  
-^ NFR-Code                                         ^ Name of Category                        ^ Method                               ^ AD     ^ EF                                   ^ Key Category <sup>1</sup>  ^ State of reporting +^ NFR-Code                                         ^ Name of Category                        ^ Method                               ^ AD     ^ EF                                   ^ State of reporting 
-| 3.I                                              | Agriculture other                                                            |        |                                      |                            |                     | +| 3.I                                              | Agriculture other                                                            |        |                                      |                     | 
-| **consisting of / including source categories**                                           ||                                                                                                                                 +| **consisting of / including source categories**                                                                                                                                                    |||||| 
-| 3.I                                              | Storage of digestate from energy crops  | T2 (NH<sub>3</sub>, NO<sub>x</sub> | Q, PS  | CS (NH<sub>3</sub>, NO<sub>x</sub>)  | no key category            |                     |+| 3.I                                              | Storage of digestate from energy crops  | T2 (NH<sub>3</sub>, NO<sub>x</sub> | Q, PS  | CS (NH<sub>3</sub>, NO<sub>x</sub> |                     |
  
-<hidden>+^                ^  NO<sub>x</sub>  ^  NMVOC  ^  SO<sub>2</sub>  ^  NH<sub>3</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP  ^  BC  ^  CO  ^  Pb  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ 
 +| Key Category:  |  -/-              -      |  -                -/-              -                  -                |  -    |  -    -    -    -    -    -      -    |  -    | 
 + {{page>general:Misc:LegendEIT:start}} 
 +\\
  
----- 
-Legend 
-T = key source by Trend / L = key source by Level 
- 
----- 
- 
-//Methods//  
-D: Default 
-RA: Reference Approach 
-T1: Tier 1 / Simple Methodology * 
-T2: Tier 2* 
-T3: Tier 3 / Detailed Methodology * 
-C: CORINAIR 
-CS: Country Specific 
-M: Model 
-as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2019, in the group specific chapters.  
- 
----- 
- 
-//AD:- Data Source for Activity Data // 
-NS: National Statistics 
-RS: Regional Statistics 
-IS: International Statistics 
-PS: Plant Specific data 
-AS: Associations, business organisations 
-Q: specific questionnaires, surveys 
- 
----- 
- 
-//EF - Emission Factors//  
-D: Default (EMEP Guidebook) 
-C: Confidential 
-CS: Country Specific 
-PS: Plant Specific data</hidden> 
- 
----- 
 ==== Country specifics ==== ==== Country specifics ====
    
  
  
-In 2019, NH<sub>3</sub>  emissions from category 3.I (agriculture other) derived up to 0.6 % from total agricultural emissions, which is equal to ~ 3.kt NH<sub>3</sub> . NO<sub>x</sub>  emissions from category 3.I contribute 0.15 % (~ 0.17 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Rösemann et al. 2021, Chapter 10 ((Rösemann et al. (2021): Rösemann C., Haenel H-D., Vos C., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & FußR(2021)Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD)Submission 2021. Thünen Report (in preparation). https://www.thuenen.de/de/ak/arbeitsbereiche/emissionsinventare/)). +In 2020, NH<sub>3</sub>  emissions from category 3.I (agriculture other) derived up to 0.6 % from total agricultural emissions, which is equal to ~ 3.kt NH<sub>3</sub> . NO<sub>x</sub>  emissions from category 3.I contribute 0.16 % (~ 0.17 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Vos et al. 2022, Chapter 10 ((Vos C, Rösemann C, Haenel H-D, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Schreiner C, Osterburg BFuß R (2022) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2020 : Report on methods and data (RMD) Submission 2022Braunschweig: Johann Heinrich von Thünen-Institut, 452 p, Thünen Rep 91, DOI:10.3220/REP1646725833000. https://www.thuenen.de/de/fachinstitute/agrarklimaschutz/arbeitsbereiche/emissionsinventare)). The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c. 
-Note that these emissions of NH<sub>3</sub>  and NO<sub>x</sub>  from storage of anaerobically digested energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see adjustments). + 
-The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.+==== Activity Data ====
  
-**Activity Data** 
 Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated. Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated.
  
  
 //Table 1: N amount in energy crops fed into anaerobic digestion// //Table 1: N amount in energy crops fed into anaerobic digestion//
-^  N amount in energy crops in Gg N                                                                                                          |||||||||||||| +^  N amount in energy crops in Gg N                                                                                                                  ||||||||||||||| 
-^  1990                              ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ +^  1990                              ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ 2020   
-| 0.1                                | 0.7    | 5.6    | 47.6   | 172.0  | 214.5  | 234.9  | 284.1  | 297.3  | 308.8  | 307.1  | 302.1  | 297.6  | 297. |+                               0.1 |    0.7 |    5.6 |   47.6 |  172.0 |  214.5 |  234.9 |  284.1 |  297.3 |  308.8 |  307.1 |  302.1 |  297.6 |  297.8 |  297.8 |
  
  
 //Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates// //Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates//
  
-^  Distribution of gastight storage and non-gastight storage, in %                                                                                                                  |||||||||||||^^ +^  Distribution of gastight storage and non-gastight storage, in %                                                                                                                         |||||||||||||||| 
-^                                                                    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ +^                                                                    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ 2020  ^ 
-| gastight                                                          | 0.0    | 4.7    | 9.4    | 15.8   | 42.2   | 47.5   | 59.4   | 61.9   | 63.9   | 64.6   | 64.8   | 64.5   | 64.8   64.  | +| gastight                                                          | 0.0    | 4.7    | 9.4    | 15.8   | 42.2   | 47.5   | 59.4   | 61.9   | 63.9   | 64.6   | 64.8   | 64.5   | 64.8   65.  | 65.5  
-| non-gastight                                                      | 100.0  | 95.3   | 90.6   | 84.2   | 57.8   | 52.5   | 40.6   | 38.1   | 36.1   | 35.4   | 35.2   | 35.5   | 35.2   35.  |+| non-gastight                                                      | 100.0  | 95.3   | 90.6   | 84.2   | 57.8   | 52.5   | 40.6   | 38.1   | 36.1   | 35.4   | 35.2   | 35.5   | 35.2   34.  | 34.5  |
    
 ==== Methodology ==== ==== Methodology ====
  
-The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i. e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH<sub>3</sub>  and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. 2021, Chapter 10.2.1.)+The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i.e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH<sub>3</sub>  and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Vos et al. 2022, Chapter 10.2.1.).
  
 ==== Emission factors ==== ==== Emission factors ====
Line 83: Line 49:
 //Table 3: IEF for NH<sub>3</sub> -N and NO-N emissions from storage of digested energy crops// //Table 3: IEF for NH<sub>3</sub> -N and NO-N emissions from storage of digested energy crops//
  
-^  1990                                                              1995    ^  2000    ^  2005    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^ +^  1990                                                              1995    ^  2000    ^  2005    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019     2020    ^ 
-| **IEF in kg NH<sub>3</sub>-N per kg N in digested energy crops**                                                                                                                                    |||||||||||||| +| **IEF in kg NH<sub>3</sub>-N per kg N in digested energy crops**                                                                                                                                              ||||||||||||||| 
-| 0.0252                                                            | 0.0240   | 0.0228   | 0.0212   0.0146   | 0.0132   0.0102   0.0096   | 0.0091   | 0.0089   | 0.0089   | 0.0089   | 0.0089   | 0.0089   | +                                                           0.0252 |   0.0240 |   0.0228 |   0.0212   0.0146 |   0.0132   0.0102   0.0096 |   0.0091 |   0.0089 |   0.0089 |   0.0089 |   0.0089 |   0.0087 |   0.0087 
-| **IEF in kg NO-N per kg N in digested energy crops **                                                                                                                                               |||||||||||||| +| **IEF in kg NO-N per kg N in digested energy crops **                                                                                                                                                         ||||||||||||||| 
-| 0.00050                                                           | 0.00048  | 0.00045  | 0.00042  | 0.00029  | 0.00026  | 0.00020  | 0.00019  | 0.00018  | 0.00018  | 0.00018  | 0.00018  | 0.00018  | 0.00018  |+                                                          0.00050 |  0.00048 |  0.00045 |  0.00042 |  0.00029 |  0.00026 |  0.00020 |  0.00019 |  0.00018 |  0.00018 |  0.00018 |  0.00018 |  0.00018 |  0.00017 |  0.00017 |
  
  
Line 100: Line 66:
 ==== Recalculations ==== ==== Recalculations ====
  
-Table shows the effects of recalculations on NH<sub>3</sub>  and NO<sub>x</sub>  emissions. Differences to the last year’s submission are due to the update of activity data (**recalculation No 12**, see main page of the agricultural sector ([[sector:agriculture:start|https://iir-de-2020.wikidot.com/3-agriculture]]). Further details about recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.+All time series of the emission inventory have completely been recalculated since 1990. Table REC-1 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions from storage of anaerobically digested energy crops. Differences to last year’s submission occur only in 2019 and are due to the update of activity data (see main page of the agricultural sector[[sector:agriculture:start|Chapter 5 NFR 3 - Agriculture (OVERVIEW)]], **recalculation reason No 16**). For further details on recalculations see Vos et al. (2022), Chapter 3.5.2. 
 + 
 +//Table REC-1: Comparison of NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2021 and 2022//
  
-//Table 4: Comparison of NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB2020 and 2021//+NH<sub>3</sub> NO<sub>x</sub> emissions in Gg                                                                                                                                                ||||||||||||||||| 
 +^                                                  ^  SUB   1990    1995    2000    2005    2010    2011    2012    2013    2014    2015    2016    2017    2018    2019   ^  2020   ^ 
 +| NH<sub>3</sub>                                   | 2022  |  0.0015 |  0.0190 |  0.1563 |  1.2267 |  3.0426 |  3.4504 |  2.9206 |  3.3062 |  3.2814 |  3.3428 |  3.3004 |  3.2741 |  3.2013 |  3.1419 |  3.1419 | 
 +| NH<sub>3</sub>                                   2021   0.0015 |  0.0190 |  0.1563 |  1.2267 |  3.0426 |  3.4504 |  2.9206 |  3.3062 |  3.2814 |  3.3428 |  3.3004 |  3.2741 |  3.2013 |  3.2013 |         | 
 +| NO<sub>x</sub>                                   | 2022  |  0.0001 |  0.0010 |  0.0084 |  0.0659 |  0.1634 |  0.1852 |  0.1568 |  0.1775 |  0.1762 |  0.1795 |  0.1772 |  0.1758 |  0.1719 |  0.1687 |  0.1687 | 
 +| NO<sub>x</sub>                                   | 2021  |  0.0001 |  0.0010 |  0.0084 |  0.0659 |  0.1634 |  0.1852 |  0.1568 |  0.1775 |  0.1762 |  0.1795 |  0.1772 |  0.1758 |  0.1719 |  0.1719 |         |
  
-^ NH<sub>3</sub> / NO<sub>x</sub> emissions in Gg                                                                                                                                       ||||||||||||^||| +<WRAP center round info 60%
-^                                                  ^  SUB  ^  1990    1995    2000    2005    2010    2011    2012    2013    2014    2015    2016    2017    2018   ^  2019   ^ +For **pollutant-specific information on recalculated emission estimates for Base Year and 2019**, please see the pollutant specific recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]]
-NH<sub>3</sub>                                   | 2021  | 0.0015  | 0.0190  | 0.1563 1.2267  | 3.0426  | 3.4504  | 2.9206  | 3.3062  | 3.2814  | 3.3428  | 3.3004  | 3.2741  | 3.2013  | 3.2013  | +</WRAP>
-| NH<sub>3</sub                                  | 2020  | 0.0015  | 0.0190  | 0.1563  | 1.2267  | 3.0426  | 3.4504  | 2.9206  | 3.3062  | 3.2814  | 3.3428  | 3.3004  | 3.2741  | 3.2895  |         | +
-| NO<sub>x</sub>                                   | 2021  | 0.0001  | 0.0010  | 0.0084  | 0.0659  | 0.1634  | 0.1852  | 0.1568  | 0.1775  | 0.1762  | 0.1795  | 0.1772  | 0.1758  | 0.1719  | 0.1719 +
-| NO<sub>x</sub>                                   | 2020  | 0.0001  | 0.0010  | 0.0084  | 0.0659  | 0.1634  | 0.1852  | 0.1568  | 0.1775  | 0.1762  | 0.1795  | 0.1772  | 0.1758  | 0.1766  |         |+
 ==== Uncertainty ==== ==== Uncertainty ====
  
-Details will be described in [[general:uncertainty_evaluation:start|chapter 1.7]].+Details are described in [[general:uncertainty_evaluation:start|chapter 1.7]].