2.B.1 - Ammonia Production

Short description

Category Code Method AD EF
2.B.1 T2 PS D
NOx NMVOC SO2 NH3 PM2.5 PM10 TSP BC CO Pb Cd Hg Diox PAH HCB
Key Category: -/- - - -/- - - - - -/- - - - - - -

Click to view Legend

Click to hide Legend

T = key source by Trend L = key source by Level

Methods
D Default
RA Reference Approach
T1 Tier 1 / Simple Methodology *
T2 Tier 2*
T3 Tier 3 / Detailed Methodology *
C CORINAIR
CS Country Specific
M Model
* as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2007, in the group specific chapters.
AD - Data Source for Activity Data
NS National Statistics
RS Regional Statistics
IS International Statistics
PS Plant Specific data
AS Associations, business organisations
Q specific questionnaires, surveys
EF - Emission Factors
D Default (EMEP Guidebook)
C Confidential
CS Country Specific
PS Plant Specific data


Ammonia is synthesised from hydrogen and nitrogen, using the Haber-Bosch process. Hydrogen is produced from synthetic gas – which in turn is produced from natural gas – via a highly integrated process, steam reforming. Nitrogen is produced via air dissociation. The various plant types involved in the production of ammonia cannot be divided into individual units nor be considered as independent process parts, due to the highly integrated character of the procedure. In steam reforming, the following process parts are distinguished:

  • ACP - Advanced Conventional Process - with a fired primary reformer and secondary reforming with excess air (stoichiometric H/N ratio)
  • RPR - Reduced Primary Reformer Process - under mild conditions in a fired primary reformer and secondary splitting with excess air (sub-stoichiometric H/N ratio)

and

  • HPR - Heat Exchange Primary Reformer Process – autothermic splitting with heat exchange using a steam reformer heated with process gas (heat exchange reformer) and a separate secondary reformer or a combined autothermic reformer using excess air or enriched air (sub-stoichiometric or stoichiometric H/N ratio).

The following process is also used for ammonia synthesis: Partial oxidation, which is the gasification of fractions of heavy mineral oil or vacuum residues in the production of synthetic gas. Most plants operate using steam-reforming, with naphtha or natural gas. Only 3 % of European plants use partial oxidation.

The production decrease of more than 15 % in the first year after German reunification was the result of a market shakeup, over 2/3 of which was borne by the new German Länder. The production level then remained nearly constant in the succeeding years until 1994. The reasons for the re-increase as of 1995 back to the 1990 level are not understood; the re-increase may however be due to a change in statistical survey methods. After 1990, production levels fluctuated only slightly. Since then, the rate of ammonia production has been stable.

Method

There were four plants in Germany which produced ammonia, using both steam reforming and partial oxidation. Since mid 2014 there are only four left, but both processes are still used.

Activity data

As the CO2 emissions from ammonia production are a key category, activity data is collected plant-specifically: The AD is delivered based on a cooperation agreement with the ammonia producers and the IVA (Industrieverband Agrar). The plant specific data is made anonymous by the IVA and then is sent to the UBA.

Emission factor

For NOx and NH3 and CO, the default emission factors from the CORINAIR Guidebooks of 1 kg/t NH3 for NOx, 0.01kg/t NH3 for NH3 and 0.1 kg/t NH3 for CO are used (EEA, 2019) 1). The CO emission factor has been newly included in this year’s submission.

Recalculations

With the newly included CO emission factor, recalculations of CO have been carried out for this year's submission.The total CO emissions from 1990 to 2020 are calculated and listed in Table 1.

Table 1: CO emissions from ammonia production

Year CO emission (in kt)
1990 0.27
1991 0.24
1992 0.24
1993 0.23
1994 0.24
1995 0.29
1996 0.30
1997 0.29
1998 0.30
1999 0.29
2000 0.32
2001 0.30
2002 0.32
2003 0.32
2004 0.30
2005 0.33
2006 0.32
2007 0.33
2008 0.31
2009 0.27
2010 0.31
2011 0.32
2012 0.31
2013 0.32
2014 0.29
2015 0.27
2016 0.30
2017 0.30
2018 0.30
2019 0.29
2020 0.30

For pollutant-specific information on recalculated emission estimates for Base Year and 2019, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

At the moment, no category-specific improvements are planned.


1) EEA, 2019: EMEP EEA Emission Inventory Guidebook 2019, Oct 2019: page 15, Table 3.2: Tier 1 emission factors for source category 2.B.1 Ammonia production