meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:agriculture:agricultural_soils:start [2021/12/25 14:23] – [Table] doeringsector:agriculture:agricultural_soils:start [2022/09/19 07:56] (current) – Fix link hausmann
Line 15: Line 15:
 | [[3Df_Agriculture other|3.D.f]]                                                                                            | Agriculture other including use of pesticides                                                          | T2 (HCB)                                          | NS      | D                                        |                            | | [[3Df_Agriculture other|3.D.f]]                                                                                            | Agriculture other including use of pesticides                                                          | T2 (HCB)                                          | NS      | D                                        |                            |
  
-^  Key Category  ^  SO₂     ^  NOₓ  ^  NH₃  ^  NMVOC  ^  CO   ^  BC   ^  Pb   ^  Hg   ^  Cd   ^  Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM₁₀  ^  PM₂ ₅  ^ +^  Key Category  ^  NO<sub>x</sub>  ^  NMVOC  ^  SO<sub>2</sub>  ^  NH<sub>3</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>  ^  TSP  ^  BC  ^  CO  ^  Pb  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ 
-| 3.D.a.1         |  -          |  L/-  |  L/T  |  -      |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -     |  -      +| 3.D.a.1        |  L/            |  -       -               |  L/T             |  -                 |  -                |  -    |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  -    
-| 3.D.a.2.a       |  -          |  L/-  |  L/T  |  -      |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -     |  -      +| 3.D.a.2.a      |  L/            |  -       -               |  L/T             |  -                 |  -                |  -    |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  -    
-| 3.D.a.2.b       |  -          |  -/-   -/-  |  -      |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -     |  -      +| 3.D.a.2.b      |  -/-             |  -       -               |  -/-             |  -                 |  -                |  -    |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  -    
-| 3.D.a.2.c       |  -          |  -/-   L/T  |  -      |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -     |  -      +| 3.D.a.2.c      |  -/-             |  -       -               |  L/T             |  -                 |  -                |  -    |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  -    
-| 3.D.a.3         |  -          |  -/-   -/-  |  -      |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -     |  -      +| 3.D.a.3        |  -/-             |  -       -               |  -/-             |  -                 |  -                |  -    |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  -    
-| 3.D.c           |  -          |  -    |  -    |  -      |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  L/ |  L/  |  -/-    | +| 3.D.c          |  -               |  -      |  -               |  -               |  -/-               |  L/             |  L/ |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  -    | 
-| 3.D.e           |  -          |  -    |  -    |  -/-    |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -     |  -      +| 3.D.e          |  -               |  -/-    |  -               |  -               |  -                 |  -                |  -    |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  -    
-| 3.D.f           |  -          |  -    |  -    |  -      |  -    |  -    |  -    |  -    |  -    |  -     |  -    |  L/-  |  -    |  -     |  -      |+| 3.D.f          |  -               |  -      |  -               |  -               |  -                 |  -                |  -    |  -   |  -   |  -   |  -   |  -   |  -     |  -    |  L/-  |
  {{page>general:Misc:LegendEIT:start}}  {{page>general:Misc:LegendEIT:start}}
 \\ \\
Line 32: Line 32:
  
 ==== NH₃ and NOₓ ==== ==== NH₃ and NOₓ ====
-In 2019the category of agricultural soils emitted 311.kt NH<sub>3</sub> or 55.% of the total agricultural NH<sub>3</sub> emissions in Germany (557.kt NH<sub>3</sub>). The main contributions to the total NH<sub>3</sub> emissions from agricultural soils are the application of manure (3.D.a.2.a), with 174.kt (55.%) and the application of inorganic N-fertilizers (3.D.a.1) with 68.1 kt (12,2 %).+In 2020, agricultural soils emitted 260.kt NH<sub>3</sub> or 50.% of the total agricultural NH<sub>3</sub> emissions in Germany (512.kt NH<sub>3</sub>). The main contributions to the total NH<sub>3</sub> emissions from agricultural soils are the application of manure (3.D.a.2.a), with 158.kt (61.%) and the application of inorganic N-fertilizers (3.D.a.1) with 50.1 kt (19.3 %).
  
-Application of sewage sludge (3.D.a.2.b) contributes 0.% or 1.kt NH<sub>3</sub>.+Application of sewage sludge (3.D.a.2.b) contributes 0.% or 1.kt NH<sub>3</sub>.
  
-The application of residues from the digestion of energy crops (3.D.a.2.c) leads to 54.kt NH<sub>3</sub> or 17.%. N excretions on pastures (3.D.a.3) have a share of 12.kt NH<sub>3</sub> or 4.%.+The application of residues from the digestion of energy crops (3.D.a.2.c) leads to 37.kt NH<sub>3</sub> or 14.%. N excretions on pastures (3.D.a.3) have a share of 12.kt NH<sub>3</sub> or 4.%.
  
-NH<sub>3</sub> emissions from application of residues from the digestion of energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments [[general:adjustments:adjustment_de-d|Adjustment DE - D - Nitrogen oxides (3.D.a.2.c Other organic fertilisers applied to soils (including compost)') &amp; Ammonia from Energy Crops]]). +In 2020, agricultural soils were the source of 98.6 % (107.kt) of the total of NO<sub>x</sub> emissions in the agricultural category (108.kt). The NO<sub>x</sub> emissions from agricultural soils are primarily due to application of inorganic fertilizer (3.D.a.1) (50.%) and manure (3.D.a.2.a) (34.%). Application of residues from digested energy crops (3.D.a.2.c) contributes 10.% to agricultural soil emissions, 4.% are due to excretions on pastures (3.D.a.3). Emissions from application of sewage sludge (3.D.a.2.b) contribute 0.5 %.
- +
-In 2019, agricultural soils were the source of 98.6 % (110.kt) of the total of NO<sub>x</sub> emissions in the agricultural category (112.kt). The NO<sub>x</sub> emissions from agricultural soils are mostly due to application of inorganic fertilizer (3.D.a.1) (50.%) and manure (3.D.a.2.a) (33.%). Application of residues from digested energy crops (3.D.a.2.c) contributes 10.% to agricultural soil emissions, 4.% are due to excretions on pastures (3.D.a.3). Emissions from application of sewage sludge (3.D.a.2.b) contribute 0.5 %+
- +
-All NO<sub>x</sub> emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments [[general:adjustments:adjustment_de-c|]] and [[general:adjustments:adjustment_de-d|Adjustment DE - D - Nitrogen oxides (3.D.a.2.c Other organic fertilisers applied to soils (including compost)') &amp; Ammonia from Energy Crops]]).+
  
 ==== NMVOC ==== ==== NMVOC ====
-In 2019, the category of agricultural soils contributed 8.kt NMVOC or 2.% to the total agricultural NMVOC emissions in Germany. The only emission source was cultivated crops (3.D.e). All NMVOC emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments (see [[general:adjustments:adjustment_de-c|]]).+In 2020, the category of agricultural soils contributed 9.kt NMVOC or 3.% to the total agricultural NMVOC emissions in Germany. The only emission source was cultivated crops (3.D.e).
  
 ====  TSP, PM₁₀ & PM₂.₅ ==== ====  TSP, PM₁₀ & PM₂.₅ ====
-In 2019, agricultural soils contributed, respectively, 28.% (17.kt), 57.% (17.kt) and 15.% (0.7 kt) to the total agricultural TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions (60.3 kt, 30.kt, 4.4 kt, respectively). The emissions are reported in category 3.D.c (Farm-level agricultural operations including storage, handling and transport of agricultural products).+In 2020, agricultural soils contributed, respectively, 28.% (17.kt), 57.% (17.kt) and 15.% (0.7 kt) to the total agricultural TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions (60.3 kt, 30.kt, 4.4 kt, respectively). The emissions are reported in category 3.D.c (Farm-level agricultural operations including storage, handling and transport of agricultural products).
  
  
 =====3.D.a.1 - Inorganic N-fertilizers ===== =====3.D.a.1 - Inorganic N-fertilizers =====
-The calculation of NH<sub>3</sub> and NOx (NO) emissions from the application of inorganic fertilizers is described in Rösemann et al. (2021), Chapter 11.1 ((Rösemann et al. (2021): Rösemann C., Haenel H-D., Vos C., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & FußR(2021)Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD)Submission 2021. Thünen Report (in preparation). https://www.thuenen.de/de/ak/arbeitsbereiche/emissionsinventare/)).+The calculation of NH<sub>3</sub> and NOx (NO) emissions from the application of inorganic fertilizers is described in Vos et al. (2022), Chapter 11.1 ((Vos C, Rösemann C, Haenel H-D, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Schreiner C, Osterburg BFuß R (2022) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2020 : Report on methods and data (RMD) Submission 2022Braunschweig: Johann Heinrich von Thünen-Institut, 452 p, Thünen Rep 91, DOI:10.3220/REP1646725833000. https://www.thuenen.de/de/fachinstitute/agrarklimaschutz/arbeitsbereiche/emissionsinventare)).
  
 ==== Activity Data ==== ==== Activity Data ====
-German statistics report the amounts of fertilizers sold which are assumed to equal the amounts that are applied. Since the 2021 submission, storage effects are approximated by applying a moving average to the sales data  (moving centered three-year average, for the last year a two-year average). +German statistics report the amounts of fertilizers sold which are assumed to equal the amounts that are applied. Since the 2021 submission, storage effects are approximated by applying a moving average to the sales data  (moving centered three-year average, for the last year a weighted two-year average, which assigns 2/3 of the weight to the last year). 
  
 //Table 1: AD for the estimation of NH<sub>3</sub> and NOx emissions from application of inorganic fertilizers// //Table 1: AD for the estimation of NH<sub>3</sub> and NOx emissions from application of inorganic fertilizers//
Line 75: Line 71:
  
 ==== Emission factors ==== ==== Emission factors ====
-The emission factors for NH<sub>3</sub> depend on fertilizer type, see EMEP (2019)-3D-15. Table 2 lists the EMEP emission factors for the fertilizers used in the inventory. In order to reflect average German conditions the emission factors for cool climate and a pH value lower than 7 was chosen.+The emission factors for NH<sub>3</sub> depend on fertilizer type, see EMEP (2019)-3D-15. Table 2 lists the EMEP emission factors for the fertilizers used in the inventory. In order to reflect average German conditions the emission factors for cool climate and a pH value lower than 7 was chosen. For urea fertilizer the German fertilizer ordinance prescribes the use of urease inhibitors or the immediate incorporation into the soil from 2020 onwards. The NH3 emission factor for urea fertilizers is therefore reduced by 70% from 2020 onwards, according to Bittman et al. (2014, Table 15)((Bittman, S., Dedina, M., Howard C.M., Oenema, O., Sutton, M.A., (eds) (2014): Options for Ammonia Mitigation. Guidance from the UNECE task Force on Reactive Nitrogen. Centre for Ecology and Hydrology, Edinburgh, UK.))
  
 //Table 2: NH<sub>3</sub>-EF for inorganic fertilizers// //Table 2: NH<sub>3</sub>-EF for inorganic fertilizers//
Line 88: Line 84:
 | Other straight fertilizers                                                                            0.010 | | Other straight fertilizers                                                                            0.010 |
  
-For NO<sub>x</sub>, the simpler methodology by EMEP (2019)-3D-11 was used. The emission factor 0.040 from EMEP, 2019-3D, Table 3.1 has the units of kg N<sub>2</sub>O per kg fertilizer N and was derived from Stehfest and Bouwman (2006) ((Stehfest E., Bouwman L. (2006): N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global emissions. Nutr. Cycl. Agroecosyst. 74, 207 – 228.)). The German inventory uses the emission factor 0.012 kg NO-N per kg N derived from Stehfest and Bouwman (2006). This is equivalent to an emission factor of 0.03943 kg NO<sub>x</sub> per kg fertilizer N (obtained by multiplying 0.012 kg NO-N per kg N with the molar weight ratio 46/14 for NO<sub>2</sub>: NO). The inventory uses the unrounded emission factor.+For NO<sub>x</sub>, the simpler methodology by EMEP (2019)-3D-11 was used. The emission factor 0.040 from EMEP, 2019-3D, Table 3.1 has the units of kg N<sub>2</sub>O per kg fertilizer N and was derived from Stehfest and Bouwman (2006)((Stehfest E., Bouwman L. (2006): N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global emissions. Nutr. Cycl. Agroecosyst. 74, 207 – 228.)). The German inventory uses the emission factor 0.012 kg NO-N per kg N derived from Stehfest and Bouwman (2006). This is equivalent to an emission factor of 0.03943 kg NO<sub>x</sub> per kg fertilizer N (obtained by multiplying 0.012 kg NO-N per kg N with the molar weight ratio 46/14 for NO<sub>2</sub>: NO). The inventory uses the unrounded emission factor.
  
 //Table 3: Emission factor for NO<sub>x</sub> emissions from fertilizer application// //Table 3: Emission factor for NO<sub>x</sub> emissions from fertilizer application//
Line 96: Line 92:
  
 ==== Trend discussion for Key Sources ==== ==== Trend discussion for Key Sources ====
-In the last five years (and in the last three years in dramatic fashion) fertilizer sales have decreased. Emissions have fallen accordingly. This is even more the case with NH<sub>3</sub> than with NO<sub>x</sub>, as total NH<sub>3</sub> from the application of mineral fertilizers is very strongly correlated with the amount of urea applied (R<sup>2</sup> = 0.89), the sales of which have decreased more than for all other mineral fertilizers.+In the last years (and up to 2019 in dramatic fashion) fertilizer sales have decreased.  Emissions have fallen accordingly. This is even more pronounced for NH<sub>3</sub> than for NO<sub>x</sub>, as total NH<sub>3</sub> from the application of mineral fertilizers is, until the year 2019, very strongly correlated with the amount of urea applied (R2 = 0.89), the sales of which have decreased more than for all other mineral fertilizers. Since 2020 the negative trend is reinforced as urea fertilizer have to be either used with urease inhibitors or have to be incorporated into the soil directly, which causes 70% lower emissions (Bittman et al. 2014).
  
  
 ==== Recalculations ==== ==== Recalculations ====
-Table REC-1 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The procedure of temporal averaging of activity data has been applied for the first time (**recalculation reason 13**, see [[sector:agriculture:start|main page of the agricultural sector]]). It results in smoothing of extreme values and redistribution of emissions between neighbouring years. Hence, the emissions from fertilizer application changed markedly in every year compared to last year’s submission.+Table REC-1 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only differences are in 2019 as the year 2020 is now included in the weighted average 
  
  
 // //
-Table REC-1: Comparison of NH<sub>3</sub> and NO<sub>x</sub> emissions from fertilizer application of the submissions (SUB) 2020 and 2021//+Table REC-1: Comparison of NH<sub>3</sub> and NO<sub>x</sub> emissions from fertilizer application of the submissions (SUB) 2021 and 2022//
  
 ^  NH<sub>3</sub> and NO<sub>x</sub> emissions from fertilizer application, in Gg                                                                                                                                 ||||||||||||||||| ^  NH<sub>3</sub> and NO<sub>x</sub> emissions from fertilizer application, in Gg                                                                                                                                 |||||||||||||||||
Line 117: Line 113:
  
 =====  3.D.a.2.a - Animal manure applied to soils ===== =====  3.D.a.2.a - Animal manure applied to soils =====
-In this sub category Germany reports the NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of manure (including application of anaerobically digested manure). For an overview see Rösemann et al. (2021), Chapter 11.2.+In this sub category Germany reports the NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of manure (including application of anaerobically digested manure). For an overview see Vos et al. (2022), Chapter 11.2.
  
 ==== Activity data ==== ==== Activity data ====
 The calculation of the amount of N in manure applied is based on the N mass flow approach (see 3.B). It is the total of N excreted by animals in the housing and the N imported with bedding material minus N losses by emissions of N species from housing and storage. Hence, the amount of total N includes the N contained in anaerobically digested manures to be applied to the field. The calculation of the amount of N in manure applied is based on the N mass flow approach (see 3.B). It is the total of N excreted by animals in the housing and the N imported with bedding material minus N losses by emissions of N species from housing and storage. Hence, the amount of total N includes the N contained in anaerobically digested manures to be applied to the field.
  
-The frequencies of application techniques and incorporation times as well as the underlying data sources are described in Rösemann et al. (2021), Chapter 3.4.3. The frequencies are provided e. g. in the NIR 2021((NIR (2021): National Inventory Report 2021 for the German Greenhouse Gas Inventory 1990-2019. Available in April 2021.)), Chapter 19.3.2.+The frequencies of application techniques and incorporation times as well as the underlying data sources are described in Vos et al. (2022), Chapter 3.4.3. The frequencies are provided e. g. in the NIR 2022((NIR (2022): National Inventory Report 2022 for the German Greenhouse Gas Inventory 1990-2019. Available in April 2022.)), Chapter 19.3.2.
  
 //Table 4: AD for the estimation of NH<sub>3</sub> and  NO<sub>x</sub> emissions from application of manure// //Table 4: AD for the estimation of NH<sub>3</sub> and  NO<sub>x</sub> emissions from application of manure//
Line 132: Line 128:
  
 ==== Methodology ==== ==== Methodology ====
-NH<sub>3</sub> emissions from manure application are calculated separately for each animal species in the mass flow approach by multiplying the respective TAN amount with NH<sub>3</sub> emission factors for the various manure application techniques. For details see [[sector:agriculture:manure_management:start|[3-b-manure-management 3.B]]] and Rösemann et al. (2021), Chapter 4 to 8 and 11.3. +NH<sub>3</sub> emissions from manure application are calculated separately for each animal species in the mass flow approach by multiplying the respective TAN amount with NH<sub>3</sub> emission factors for the various manure application techniques. For details see [[sector:agriculture:manure_management:start|[3-b-manure-management 3.B]]] and Vos et al. (2022), Chapter 4 to 8 and 11.3. 
-For NO<sub>x</sub> emissions from manure application the inventory calculates NO-N emissions (see Rösemann et al. (2021), Chapter 11.2, that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/14. The Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2019)-3D-11 is used, as no specific methodology is available for manure application.+For NO<sub>x</sub> emissions from manure application the inventory calculates NO-N emissions (see Vos et al. (2022), Chapter 11.2, that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/14. The Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2019)-3D-11 is used, as no specific methodology is available for manure application.
  
 ==== Emission factors ==== ==== Emission factors ====
Line 146: Line 142:
  
 ==== Trend discussion for Key Sources ==== ==== Trend discussion for Key Sources ====
-Both NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of animal manures are key sources. Total NO<sub>x</sub> is calculated proportionally to the total N in the manures applied which remarkably decreased from 1990 to 1991 due to the decline in animal numbers following the German reunification (reduction of livestock numbers in Eastern Germany). Since then the amount of N in manure applied shows no significant trend (950 +/- 40 Gg N), see Table 4 and therefore there is no trend in the NO<sub>x</sub> emissions. +Both NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of animal manures are key sources. Total NO<sub>x</sub> is calculated proportionally to the total N in the manures applied which decreased remarkably from 1990 to 1991 due to the decline in animal numbers following the German reunification (reduction of livestock numbers in Eastern Germany). In the 1990s and 2000s this was followed by a weakened decline in animal manure amounts. From 2010 to 2014 there was a slight increase and since then the amount of N in manure applied has been slightly declining again, see Table 4. The NO<sub>x</sub> emissions follow these trends.  
-For total NH<sub>3</sub> emissions even after 1991 there is a slight negative trend. This is due to the increasing use of application practices with lower NH<sub>3</sub> emission factors+For total NH<sub>3</sub> emissions there is a slight negative trend. This is due to the increasing use of application practices with lower NH<sub>3</sub> emission factors.
-For both gases, emissions are slightly decreasing since 2015. This is due to the fact that cattle and swine animal numbers are declining.+
  
 ==== Recalculations ==== ==== Recalculations ====
-Table REC-2 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> .The total emissions of NH<sub>3</sub> and NO<sub>x</sub>  from application of manure are significantly lower than those of last year’s submission. These differences are predominantly caused by the update of the models of dairy cowscalves, heifers and male beef cattle, see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No. 1 through 3**. Much smaller is the impact of the updates of activity data for male cattle years, pigs, poultry and sheep (see **recalculation reasons 4, 6, 7, and 9 through 12**) as well as the update of activity data for air scrubbing systems in pig and broiler houses (see **recalculation reasons 8 and 10**). Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.+Table REC-2 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub>.The total emissions of NH<sub>3</sub> and NO<sub>x</sub> from application of manure are slightly lower than those of last year’s submission from the year 2000 onwards for NH<sub>3</sub>from the year 2010 onwards for NO<sub>x</sub>. In earlier years the emissions are slightly higher than in last year’s submission
  
 +These differences are predominantly caused by the update of data from the official agricultural census 2020 as well as the update of the suckler-cow model and the new raw protein contents in feed of fattening pigs and broilers, see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No. 1, 4, 7 and 8**. 
  
-//Table REC-2: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//+Much smaller is the impact of the updates of activity data for male cattle > 2 years, pigs, poultry and sheep (see **recalculation reasons 5, 6 and 9 through 12**) Further details on recalculations are described in Vos et al. (2022), Chapter 3.5.2. 
 + 
 + 
 +//Table REC-2: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2021 and 2022//
  
 ^  NH<sub>3</sub> and NO<sub>x</sub> emissions from application of manure, in Gg                                                                                                                                                ||||||||||||||||| ^  NH<sub>3</sub> and NO<sub>x</sub> emissions from application of manure, in Gg                                                                                                                                                |||||||||||||||||
Line 168: Line 167:
  
 ===== 3.D.a.2.b – Sewage sludge applied to soils ===== ===== 3.D.a.2.b – Sewage sludge applied to soils =====
-The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of sewage sludge is described in Rösemann et al. (2021), Chapter 11.4.+The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of sewage sludge is described in Vos et al. (2022), Chapter 11.4.
  
 ==== Activity data ==== ==== Activity data ====
Line 190: Line 189:
  
 ==== Recalculations ==== ==== Recalculations ====
-Table REC-3 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only change compared to last year’s submission occurs for the year 2018, due to the update of the activity data (see [[sector:agriculture:start|main page of the agricultural sector]], **recalculation No 14**. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2. 
  
-//Table REC-3: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//+Table REC-3 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only change compared to last year’s submission occurs for the year 2018 and 2019 due to the update of the activity data (see [[sector:agriculture:start|main page of the agricultural sector]], **recalculation No 15**. Further details on recalculations are described in Vos et al. (2022), Chapter 3.5.2. 
 + 
 +//Table REC-3: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2021 and 2022//
  
 ^ NH<sub>3</sub> and NO<sub>x</sub> emissions from application of sewage sludge, in Gg                                                                                                                                 ||||||||||||||||| ^ NH<sub>3</sub> and NO<sub>x</sub> emissions from application of sewage sludge, in Gg                                                                                                                                 |||||||||||||||||
Line 205: Line 205:
  
 ===== 3.D.a.2.c - Other organic fertilizers applied to soils ===== ===== 3.D.a.2.c - Other organic fertilizers applied to soils =====
-This sub category describes Germany’s NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of residues from digested energy crops. For details see Rösemann et al. (2021), Chapters 10.2 and 11.3.+This sub category describes Germany’s NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of residues from digested energy crops. For details see Vos et al. (2022), Chapters 10.2 and 11.3.
  
 ==== Activity data ==== ==== Activity data ====
-Activity data is the amount of N in residues from anaerobic digestion of energy crops when leaving storage. This amount of N is the N contained in the energy crops when being fed into the digestion process minus the N losses by emissions of N species from the storage of the residues (see 3.I). N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. (2021), Chapter 10.2.1).+Activity data is the amount of N in residues from anaerobic digestion of energy crops when leaving storage. This amount of N is the N contained in the energy crops when being fed into the digestion process minus the N losses by emissions of N species from the storage of the residues (see 3.I). N losses from pre-storage are negligible and there are no N losses from fermenter (see Vos et al. (2022), Chapter 10.2.1).
  
 //Table 7: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of residues from anaerobic digestion of energy crops// //Table 7: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of residues from anaerobic digestion of energy crops//
Line 217: Line 217:
  
 ==== Methodology ==== ==== Methodology ====
-The NH<sub>3</sub> emissions are calculated the same way as the NH<sub>3</sub> emissions from application of animal manure (3.D.a.2.a). The frequencies of application techniques and incorporation times as well as the underlying data sources are provided e. g. in the NIR 2021, Chapter 19.3.2. The amounts of TAN in the residues applied are obtained from the calculations of emissions from the storage of the digested energy crops (3.I).+The NH<sub>3</sub> emissions are calculated the same way as the NH<sub>3</sub> emissions from application of animal manure (3.D.a.2.a). The frequencies of application techniques and incorporation times as well as the underlying data sources are provided e. g. in the NIR 2022, Chapter 19.3.2. The amounts of TAN in the residues applied are obtained from the calculations of emissions from the storage of the digested energy crops (3.I).
  
 For NO<sub>x</sub> emissions from application of residues the Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2019)-3D-11 is used. The inventory calculates NO emissions that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/30. For NO<sub>x</sub> emissions from application of residues the Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2019)-3D-11 is used. The inventory calculates NO emissions that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/30.
  
 ==== Emission factors ==== ==== Emission factors ====
-For NH<sub>3</sub> the emission factors for untreated cattle slurry were adopted, see Rösemann et al. (2021), Chapter 10.2. As the NO<sub>x</sub> method for fertilizer application is used for the calculation of NO<sub>x</sub> emissions from the application of residues, the emission factor for fertilizer application was used (see Rösemann et al. (2021), Chapter 11.1)+For NH<sub>3</sub> the emission factors for untreated cattle slurry were adopted, see Vos et al. (2022), Chapter 10.2. As the NO<sub>x</sub> method for fertilizer application is used for the calculation of NO<sub>x</sub> emissions from the application of residues, the emission factor for fertilizer application was used (see Vos et al. (2022), Chapter 11.1)
  
 Table 8 shows the implied emission factors for NH<sub>3</sub> emissions from application of residues from digested energy crops. Table 8 shows the implied emission factors for NH<sub>3</sub> emissions from application of residues from digested energy crops.
Line 236: Line 236:
  
 ==== Recalculations ==== ==== Recalculations ====
-Table REC-4 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only change compared to last year’s submission occurs for 2018, due to the update of the activity data (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 15**, and Rösemann et al. (2021), Chapter 3.5.2.) 
  
-//Table REC-4: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//+Table REC-4 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only changes compared to last year’s submission occur for the years 2015-2019, due to the use of new data on manure spreading techniques from the official agricultural census 2020 (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 1 and 16**, and Vos et al. (2022), Chapter 3.5.2.) 
 + 
 +//Table REC-4: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2021 and 2022// 
 ^ NH<sub>3</sub> and NO<sub>x</sub> emissions from application of digested energy crops, in Gg                                                                                                                                  ||||||||||||||||| ^ NH<sub>3</sub> and NO<sub>x</sub> emissions from application of digested energy crops, in Gg                                                                                                                                  |||||||||||||||||
 ^                                                                                                SUB    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^ ^                                                                                                SUB    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^
Line 251: Line 253:
  
 =====  3.D.a.3 - Urine and dung deposited by grazing animals ===== =====  3.D.a.3 - Urine and dung deposited by grazing animals =====
-The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from N excretions on pasture is described in Rösemann et al. (2021), Chapter 11.5.+The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from N excretions on pasture is described in Vos et al. (2022), Chapter 11.5.
  
 ==== Activity data ==== ==== Activity data ====
Line 287: Line 289:
  
 ==== Recalculations ==== ==== Recalculations ====
-Table REC-5 shows the effects of recalculations on NH<sub>3</sub> and NOx emissions. Because overall N excretions on pasture are lower than in last year’s submission (predominantly due to the update of cattle models, see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 1 through 3**), NO<sub>x</sub> emissions are lower as well. However, although NH<sub>3</sub> emissions could be expected to show the same pattern, this is more than compensated by increased emission factors for cattle grazing (see list of **recalculation reasons, No 5**). Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.+Table REC-5 shows the effects of recalculations on NH<sub>3</sub> and NOx emissions.  
 + 
 +Because overall N excretions on pasture are lower than in last year’s submission for dairy cattle, but higher for other cattle (predominantly due to new cattle grazing data from the official agricultural census 2020 and the update of the suckler-cow models, see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 1 and 2**), NO<sub>x</sub> emissions are lower than in last year’s submission. However, although NH<sub>3</sub> emissions could be expected to show the same pattern, they are slightly higher than in the last submission in 1990-2013 and slightly lower than in last year’s submission from 2014 onwards. This is due to a combination of two effects: The TAN content of the suckler cows’ N-excretions is higher in the new suckler-cow model, which leads to higher emissions over the whole time series. This is over-compensated by declining dairy cow grazing times from 2014 onwards, which leads to lower emissions (see list of **recalculation reasons, No 1 and 2**). Further details on recalculations are described in Vos et al. (2022), Chapter 3.5.2. 
 + 
 +//Table REC-5: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2021 and 2022//
  
-//Table REC-5: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021// 
 ^ NH<sub>3</sub> and NO<sub>x</sub> emissions from grazing, in Gg                                                                                                                                 ||||||||||||||||| ^ NH<sub>3</sub> and NO<sub>x</sub> emissions from grazing, in Gg                                                                                                                                 |||||||||||||||||
 ^                                                                  ^  SUB  ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^ ^                                                                  ^  SUB  ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^
Line 301: Line 306:
  
 ===== 3.D.c - Farm-level agricultural operations including storage, handling and transport of agricultural products ===== ===== 3.D.c - Farm-level agricultural operations including storage, handling and transport of agricultural products =====
-In this category Germany reports TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions from crop production according to EMEP (2019)-3D-11. For details see Rösemann et al. (2021), Chapter 11.14.+In this category Germany reports TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions from crop production according to EMEP (2019)-3D-11. For details see Vos et al. (2022), Chapter 11.14.
  
 ==== Activity data ==== ==== Activity data ====
Line 330: Line 335:
  
 ==== Recalculations ==== ==== Recalculations ====
-Table REC-6 shows the effects of recalculations on particulate matter emissions. The only changes with respect to last year’s submission occur in the years 2010 through 2012 because of updates of cultivation areas (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 16**). However, due to the data format in Table REC-6, these differences are not visible. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.+Table REC-6 shows the effects of recalculations on particulate matter emissions. There are minor changes with respect to last year’s submission in several years because of updates of cultivation areas (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 17**). However, due to the data format in Table REC-6, these differences are not visible. Further details on recalculations are described in Vos et al. (2022), Chapter 3.5.2.
  
-//Table REC-6: Comparison of particle emissions (TSP, PM<sub>10</sub> & PM<sub>2.5</sub>) of the submissions (SUB) 2020 and 2021//+//Table REC-6: Comparison of particle emissions (TSP, PM<sub>10</sub> & PM<sub>2.5</sub>) of the submissions (SUB) 2021 and 2022//
  
 ^ TSP, PM<sub>10</sub>, PM<sub>2.5</sub> emissions from crop production, in Gg                                                                                                                                 ||||||||||||||||| ^ TSP, PM<sub>10</sub>, PM<sub>2.5</sub> emissions from crop production, in Gg                                                                                                                                 |||||||||||||||||
Line 349: Line 354:
  
 =====  3.D.e - Cultivated crops ===== =====  3.D.e - Cultivated crops =====
-In this category Germany reports NMVOC emissions from crop production according to EMEP (2019)-3D-16. For details see Rösemann et al. (2021), Chapter 11.12.+In this category Germany reports NMVOC emissions from crop production according to EMEP (2019)-3D-16. For details see Vos et al. (2022), Chapter 11.12.
  
 ==== Activity data ==== ==== Activity data ====
Line 355: Line 360:
  
 // Table 13: AD for the estimation of NMVOC emissions from crop production// // Table 13: AD for the estimation of NMVOC emissions from crop production//
-^ Arable land and grassland in 1000*ha                                                                                                                       ^||||||||||||| +^ Arable land and grassland in 1000*ha                                                                                                                                ||||||||||||||| 
-^  1990                                  1995    2000    2005    2010    2011    2012    2013    2014    2015    2016    2017    2018    2019   ^ +^  1990                                  1995    2000    2005    2010    2011    2012    2013    2014    2015    2016    2017    2018    2019   ^  2020   ^ 
-|                                16,506 |  15,312 |  15,498 |  15,561 |  15,734 |  15,752 |  15,729 |  15,769 |  15,802 |  15,719 |  15,662 |  15,647 |  15,570 |  15,563 |+|                                16'506 |  15'312 |  15'498 |  15'561 |  15'734 |  15'752 |  15'729 |  15'769 |  15'802 |  15'719 |  15'662 |  15'647 |  15'570 |  15'563 |  15'447 |
  
  
Line 367: Line 372:
  
 // Table 14: IEF for NMVOC emissions from crop production// // Table 14: IEF for NMVOC emissions from crop production//
-^ IEF for NMVOC emissions from crop production in kg ha<sub>-1</sub>                                                                                                          ^||||||||||||| +^ IEF for NMVOC emissions from crop production in kg ha<sub>-1</sub>                                                                                                                  ||||||||||||||| 
-^  1990                                                                1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ +^  1990                                                                1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019   2020  ^ 
-|                                                                0.47 |   0.53 |   0.57 |   0.59 |   0.61 |   0.57 |   0.64 |   0.66 |   0.72 |   0.63 |   0.62 |   0.62 |   0.50 |   0.55 |+|                                                                0.47 |   0.53 |   0.57 |   0.59 |   0.61 |   0.57 |   0.64 |   0.66 |   0.72 |   0.63 |   0.62 |   0.62 |   0.50 |   0.55 |   0.59 |
  
  
 ==== Trend discussion for Key Sources ==== ==== Trend discussion for Key Sources ====
-Emissions from urine and dung deposited by grazing animals are no key sources.+NMVOC emissions from crop production are no key sources.
  
 ==== Recalculations ==== ==== Recalculations ====
-Table REC-7 shows the effects of recalculations on NMVOC emissions. The only changes with respect to last year’s submission occur in the years 1999 (not shown in Table REC-7) and 2010 through 2012 because of updates of yields in 1999 and 2010 and of cultivation areas 2010 through 2012 (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 16**). However, due to the data format in Table Table REC-6, these differences are not visible. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2. +Table REC-7 shows the effects of recalculations on NMVOC emissions. There are minor changes with respect to last year’s submission in seral years because of updates of yields (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 17**). However, due to the data format in Table Table REC-6, these differences are not visible. Further details on recalculations are described in Vos et al. (2022), Chapter 3.5.2.
  
-//Table REC-7: Comparison of NMVOC emissions of the submissions (SUB) 2020 and 2021// 
  
-NMVOC emissions from crop production, in Gg                                                                                                                  ^|||||||||||||| +//Table REC-7: Comparison of NMVOC emissions of the submissions (SUB2021 and 2022//
-^  SUB                                         ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ +
-| **2021**                                       7.69 |   8.19 |   8.79 |   9.17 |   9.53 |   9.03 |  10.05 |  10.36 |  11.40 |   9.91 |   9.69 |   9.74 |   7.82 |   8.56 | +
-| **2020**                                       7.69 |   8.19 |   8.79 |   9.17 |   9.53 |   9.03 |  10.05 |  10.36 |  11.40 |   9.91 |   9.69 |   9.74 |   7.82 |        |+
  
 +^ NMVOC emissions from crop production, in Gg                                                                                                                          ||||||||||||||||
 +^  SUB                                          1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^
 +| **2022**                                       7.69 |   8.19 |   8.79 |   9.17 |   9.53 |   9.03 |  10.05 |  10.36 |  11.40 |   9.91 |   9.69 |   9.74 |   7.82 |   8.56 |   9.16 |
 +| **2021**                                       7.69 |   8.19 |   8.79 |   9.17 |   9.53 |   9.03 |  10.05 |  10.36 |  11.40 |   9.91 |   9.69 |   9.74 |   7.82 |   8.56 |        |
  
 +<WRAP center round info 60%>
 +For **pollutant-specific information on recalculated emission estimates for Base Year and 2019**, please see the pollutant specific recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].
 +</WRAP>
 ==== Planned improvements ==== ==== Planned improvements ====
 No improvements are planned at present. No improvements are planned at present.
  
 ==== Uncertainty ==== ==== Uncertainty ====
-Details will be described in [[general:uncertainty_evaluation:start|chapter 1.7]].+Details are described in [[general:uncertainty_evaluation:start|chapter 1.7]].