meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:energy_industries:public_electricity_and_heat_production [2022/03/22 08:46] – [Recalculations] kotzullasector:energy:fuel_combustion:energy_industries:public_electricity_and_heat_production [2022/03/22 11:24] (current) – [Trend discussion for Key Sources] kotzulla
Line 20: Line 20:
 A method amounting to Tier 2 is used for emission reporting. This means the use of country-specific data at a more detailed level. Emission factors and activity data are available for different fuel types, different technologies, plant size, etc. The use of plant-specific data for a bottom-up approach is not possible. Although there is a database (POSO) with fuel data including NOx, SOx and TSP emissions for large combustion plants, it is not complete and data quality is not always satisfactory. Therefore only measured and verified data were used. A method amounting to Tier 2 is used for emission reporting. This means the use of country-specific data at a more detailed level. Emission factors and activity data are available for different fuel types, different technologies, plant size, etc. The use of plant-specific data for a bottom-up approach is not possible. Although there is a database (POSO) with fuel data including NOx, SOx and TSP emissions for large combustion plants, it is not complete and data quality is not always satisfactory. Therefore only measured and verified data were used.
  
-=== Activity data === +==== Activity data ==== 
-== Conventional fuels ==+ 
 +=== Conventional fuels ==
 The key source of all conventional fuels is the National Energy Balance (NEB) [(AGEB, 2019: National energy balance and Satellite balance for renewable energy: https://ag-energiebilanzen.de/en/data-and-facts/energy-balance-2000-to-2019/)]. The fuel input for electricity production is given in line 11 ("Public thermal power stations") of the National Energy Balance. The fuel inputs for public heat production are given in lines 15 ("combined heat and power stations") and 16 ("district heating stations"). Line 14 ("Hydroelectric, wind-power, photovoltaic systems and other similar systems") comprises all systems/ plants that generate electricity from biogas, landfill gas, sewage-treatment gas or solid biomass and feed the electricity into the public grid. Since no cut-off limit applies for such systems, this category includes very small systems too. German statistics provide only electricity generation data of those biomass plants, who feed into the public grid. But the Renewable Energy Act (EEG) does allow a full registration of electricity generation from renewable energies. However, the calculation of fuel data is connected with high uncertainties, since an average generation efficiency is necessary for the conversion. The key source of all conventional fuels is the National Energy Balance (NEB) [(AGEB, 2019: National energy balance and Satellite balance for renewable energy: https://ag-energiebilanzen.de/en/data-and-facts/energy-balance-2000-to-2019/)]. The fuel input for electricity production is given in line 11 ("Public thermal power stations") of the National Energy Balance. The fuel inputs for public heat production are given in lines 15 ("combined heat and power stations") and 16 ("district heating stations"). Line 14 ("Hydroelectric, wind-power, photovoltaic systems and other similar systems") comprises all systems/ plants that generate electricity from biogas, landfill gas, sewage-treatment gas or solid biomass and feed the electricity into the public grid. Since no cut-off limit applies for such systems, this category includes very small systems too. German statistics provide only electricity generation data of those biomass plants, who feed into the public grid. But the Renewable Energy Act (EEG) does allow a full registration of electricity generation from renewable energies. However, the calculation of fuel data is connected with high uncertainties, since an average generation efficiency is necessary for the conversion.
  
Line 32: Line 34:
 For waste incineration plants, both energy and waste statistics are used to ensure completeness and to avoid double counting. For waste incineration plants, both energy and waste statistics are used to ensure completeness and to avoid double counting.
  
-== Biomass ==+=== Biomass ===
 The database for the calculation model consists of the National Energy Balance. Line 14 ("Hydroelectric, wind-power, photovoltaic systems and other similar systems") comprises all systems/ plants that generate electricity from biogas, landfill gas, sewage-treatment gas or solid biomass and feed the electricity into the public grid. Since no cut-off limit applies for such systems, this category includes very small systems, too. German statistics provide only electricity generation data of those biomass plants, who feed into the public grid. But the Renewable Energy Act (EEG) does allow a full registration of electricity generation from renewable energies. However, the calculation of fuel data is connected with high uncertainties, since an average generation efficiency is necessary for the conversion. The database for the calculation model consists of the National Energy Balance. Line 14 ("Hydroelectric, wind-power, photovoltaic systems and other similar systems") comprises all systems/ plants that generate electricity from biogas, landfill gas, sewage-treatment gas or solid biomass and feed the electricity into the public grid. Since no cut-off limit applies for such systems, this category includes very small systems, too. German statistics provide only electricity generation data of those biomass plants, who feed into the public grid. But the Renewable Energy Act (EEG) does allow a full registration of electricity generation from renewable energies. However, the calculation of fuel data is connected with high uncertainties, since an average generation efficiency is necessary for the conversion.
  
Line 40: Line 42:
 Waste quantities are available at a very detailed level for different economic sectors. Municipal and industrial waste were classified in keeping with the Ordinance on the European Waste Catalogue (AVV), with industrial waste including all waste with waste-classification numbers beginning with the numbers 01 through 19. Waste quantities are available at a very detailed level for different economic sectors. Municipal and industrial waste were classified in keeping with the Ordinance on the European Waste Catalogue (AVV), with industrial waste including all waste with waste-classification numbers beginning with the numbers 01 through 19.
  
-=== Emission factors === +==== Emission factors ===
-== Large and medium combustion plants ==+ 
 +=== Large and medium combustion plants ===
 The underlying data for the emission factors used is provided by the report on the research project "Ermittlung und Evaluierung von Emissionsfaktoren für Feuerungsanlagen in Deutschland für die Jahre 1995, 2000 und 2010" (Determination and evaluation of emission factors for combustion systems in Germany for the years 1995, 2000 and 2010"; RENTZ et al, 2002) [(Rentz et al., 2002: Rentz, O. ; Karl, U. ; Peter, H.: Ermittlung und Evaluierung von Emissionsfaktoren für Feuerungsanlagen in Deutschland für die Jahre 1995, 2000 und 2010: Forschungsbericht 299 43 142; Forschungsvorhaben im Auftrag des Umweltbundesamt; Endbericht; Karlsruhe: Deutsch-Französisches Inst. f. Umweltforschung, Univ. (TH); 2002)]. The underlying data for the emission factors used is provided by the report on the research project "Ermittlung und Evaluierung von Emissionsfaktoren für Feuerungsanlagen in Deutschland für die Jahre 1995, 2000 und 2010" (Determination and evaluation of emission factors for combustion systems in Germany for the years 1995, 2000 and 2010"; RENTZ et al, 2002) [(Rentz et al., 2002: Rentz, O. ; Karl, U. ; Peter, H.: Ermittlung und Evaluierung von Emissionsfaktoren für Feuerungsanlagen in Deutschland für die Jahre 1995, 2000 und 2010: Forschungsbericht 299 43 142; Forschungsvorhaben im Auftrag des Umweltbundesamt; Endbericht; Karlsruhe: Deutsch-Französisches Inst. f. Umweltforschung, Univ. (TH); 2002)].
 The values for the intermediate years 1996-1999 and 2001-2008 are obtained via linear interpolation. The values for the intermediate years 1996-1999 and 2001-2008 are obtained via linear interpolation.
Line 54: Line 57:
 Regarding natural gas and light fuel oil SO<sub>2</sub> emission factors were calculated by using data on the sulfur content. In terms of natural gas sulfur content has been measured during a project. Data on all important regions is available. The sulfur of the odorization is also considered, which is a bit conservativ, since not all plants use natural gas with odorization. Concerning light fuel oil, the limit value is used for emission reporting. It can be assumed that large combustion plants mainly use light fuel oil with a sulfur content of 1000 mg/kg while low-sulfur fuel oil is mainly used in small combustion plants. Regarding natural gas and light fuel oil SO<sub>2</sub> emission factors were calculated by using data on the sulfur content. In terms of natural gas sulfur content has been measured during a project. Data on all important regions is available. The sulfur of the odorization is also considered, which is a bit conservativ, since not all plants use natural gas with odorization. Concerning light fuel oil, the limit value is used for emission reporting. It can be assumed that large combustion plants mainly use light fuel oil with a sulfur content of 1000 mg/kg while low-sulfur fuel oil is mainly used in small combustion plants.
  
-== Engines ==+=== Engines ===
 Emission factors for gas engines were determined by the project: "Processing of data in emissions declarations pursuant to the 11th Ordinance on the Execution of the Federal Immission Control Act". Additional data were provided by the local authorities (results of emission monitoring). All emission factors used for reporting are derived from plants which are subject of licensing and reviewed by the competent authorities. However, a large number of the 7,500 biogas plants in Germany does not require a license. Due to the small size of the plants the total fuel consumption of small biogas plants is lower than fuel consumption of those plants who need a permit. Since emission behaviour of small and medium sized plants is completely different, it's necessary to use specific emission factors for each plant type. The calculation of activity data of small and medium sized plants is based on data from the Federal Network Agency. Emission factors are a result of different regional measurement compaigns in Saxony and Bavaria and the project: "Analysis of the emissions from biogas plants, and quantification of material flows through such plants, for ecological assessment of agricultural-sector biogas production and for inventories of the German agricultural sector" (DBFZ 2014). Emission factors for gas engines were determined by the project: "Processing of data in emissions declarations pursuant to the 11th Ordinance on the Execution of the Federal Immission Control Act". Additional data were provided by the local authorities (results of emission monitoring). All emission factors used for reporting are derived from plants which are subject of licensing and reviewed by the competent authorities. However, a large number of the 7,500 biogas plants in Germany does not require a license. Due to the small size of the plants the total fuel consumption of small biogas plants is lower than fuel consumption of those plants who need a permit. Since emission behaviour of small and medium sized plants is completely different, it's necessary to use specific emission factors for each plant type. The calculation of activity data of small and medium sized plants is based on data from the Federal Network Agency. Emission factors are a result of different regional measurement compaigns in Saxony and Bavaria and the project: "Analysis of the emissions from biogas plants, and quantification of material flows through such plants, for ecological assessment of agricultural-sector biogas production and for inventories of the German agricultural sector" (DBFZ 2014).
 Emission factors for liquid fuels are given by the project: "Determination of the state-of-the-art of emission control techniques for stationary internal combustion engines", carried out by (Müller-BBM, 2010). Emission factors for liquid fuels are given by the project: "Determination of the state-of-the-art of emission control techniques for stationary internal combustion engines", carried out by (Müller-BBM, 2010).
  
-== Waste incineration plants ==+=== Waste incineration plants ===
 Data source for emission factors of waste incineration plants is the project: "Review of the emission factors for waste incineration", carried out by (ATZ 2010) [(ATZ, 2010: Waste incineration: FKZ 3708 49 1075 "Überprüfung der Emissionsfaktoren für die Abfallverbrennung"; ATZ Entwicklungszentrum, Robert Daschner, Prof. Dr. Martin Faulstich, Prof. Dr. Peter Quicker, Samir Binder: not published)]. Data source for emission factors of waste incineration plants is the project: "Review of the emission factors for waste incineration", carried out by (ATZ 2010) [(ATZ, 2010: Waste incineration: FKZ 3708 49 1075 "Überprüfung der Emissionsfaktoren für die Abfallverbrennung"; ATZ Entwicklungszentrum, Robert Daschner, Prof. Dr. Martin Faulstich, Prof. Dr. Peter Quicker, Samir Binder: not published)].
 The aim of the study was to determine emission factors for municipal waste, industrial waste, hazardous waste, waste wood and sewage sludge incineration. Emission factors for 25 pollutants are available. The different fuel categories are consistent with the waste statistic. The fuel category "industrial waste" has different meanings: substitute fuel originate from municipal or industrial waste or untreated production waste. This kind of fuels were basically incinerated in so called waste-to-energy-plants (in German EBS-Kraftwerke). Compared to conventional municipal waste incineration plants, "EBS-Kraftwerke" are mostly smaller and more efficient. There are also some technical differences. All these plants have to comply with the same limit values. Nevertheless emission factors are different due to different abatement technology and operating conditions. The aim of the study was to determine emission factors for municipal waste, industrial waste, hazardous waste, waste wood and sewage sludge incineration. Emission factors for 25 pollutants are available. The different fuel categories are consistent with the waste statistic. The fuel category "industrial waste" has different meanings: substitute fuel originate from municipal or industrial waste or untreated production waste. This kind of fuels were basically incinerated in so called waste-to-energy-plants (in German EBS-Kraftwerke). Compared to conventional municipal waste incineration plants, "EBS-Kraftwerke" are mostly smaller and more efficient. There are also some technical differences. All these plants have to comply with the same limit values. Nevertheless emission factors are different due to different abatement technology and operating conditions.
Line 64: Line 67:
 Furthermore it was necessary to develop a method to calculate emissions from co-incineration systems. In Germany there is a large number of coal fired power plants, which also use a relevant amount of different waste fuels like sewage sludge, industrial waste (for example from paper industry), conditioned municipal waste etc. Since plant-specific data cannot be used, it's necessary to calculate emissions at a more aggregated level. Fuel data are available from ETS. Furthermore the information about the coal qualities is available. Therefore it's possible to calculate specific emission factors for co-incinerated waste fuels. Furthermore it was necessary to develop a method to calculate emissions from co-incineration systems. In Germany there is a large number of coal fired power plants, which also use a relevant amount of different waste fuels like sewage sludge, industrial waste (for example from paper industry), conditioned municipal waste etc. Since plant-specific data cannot be used, it's necessary to calculate emissions at a more aggregated level. Fuel data are available from ETS. Furthermore the information about the coal qualities is available. Therefore it's possible to calculate specific emission factors for co-incinerated waste fuels.
  
-== Table 1: Implied emission factors for public electricity and heat production ==+__Table 1: Implied emission factors for public electricity and heat production__
 ^ Pollutant                  ^  SOx      ^  NOx    TSP  ^  CO    ^  Pb      ^  Hg    Cd   ^ ^ Pollutant                  ^  SOx      ^  NOx    TSP  ^  CO    ^  Pb      ^  Hg    Cd   ^
 ^ Fuel                        [kg/TJ]                         ||||  [g/TJ]                ||| ^ Fuel                        [kg/TJ]                         ||||  [g/TJ]                |||
Line 80: Line 83:
 The following diagrams give an overview and assistance for explaining dominant emission trends of selected pollutants. The following diagrams give an overview and assistance for explaining dominant emission trends of selected pollutants.
  
-=== Fuel Consumption ===+==== Fuel Consumption ====
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_ar_fossil.png?400|Annual acitity data for fossil fuels}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_ar_fossil.png?400|Annual acitity data for fossil fuels}}
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_ar_waste.png?400|Annual activity data for waste fuels and biomass}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_ar_waste.png?400|Annual activity data for waste fuels and biomass}}
Line 87: Line 90:
 The first graph shows that the total energy consumption of fossil fuels for public electricity and heat consumption didn't change very much since 1990. The main reasons are the rising electricity demand and a great number of industrial power plants whose emissions are now reported in source category 1.A.1.a. From 1990 to the present time, a slight fuel switch from coal to natural gas was observed. In 2009 fuel consumption of all fossil fuels decreased remarkably as a result of the economic crisis. The economic recovery in 2010 led to an increasing fuel consumption because of the increasing electricity demand. From 2003 biomass consumption rises considerably due to the government aid of renewable energies. The first graph shows that the total energy consumption of fossil fuels for public electricity and heat consumption didn't change very much since 1990. The main reasons are the rising electricity demand and a great number of industrial power plants whose emissions are now reported in source category 1.A.1.a. From 1990 to the present time, a slight fuel switch from coal to natural gas was observed. In 2009 fuel consumption of all fossil fuels decreased remarkably as a result of the economic crisis. The economic recovery in 2010 led to an increasing fuel consumption because of the increasing electricity demand. From 2003 biomass consumption rises considerably due to the government aid of renewable energies.
  
-=== Sulfur Oxides - SOx ===+==== Sulfur Oxides - SOx ====
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_sox.png?400|Annual SOx emissions from stationary combustion plants in 1.A.1.a}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_sox.png?400|Annual SOx emissions from stationary combustion plants in 1.A.1.a}}
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_sox_2000.png?400|Annual SOx emissions from stationary combustion plants in 1.A.1.a, details 2000-2018}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_sox_2000.png?400|Annual SOx emissions from stationary combustion plants in 1.A.1.a, details 2000-2018}}
Line 93: Line 96:
 SO<sub>x</sub> emission trend shows the big dominance of lignite due to high Sulphur content of lignite fuels. However SO<sub>x</sub> emissions decrease more than lignite consumption does. Before the German Reunification in 1990, lignite fired public power plants in Eastern Germany didn't use flue gas desulphurisation plants. The implementation of stricter regulations in the New German Länder resulted in considerably decreasing emissions. In recent years the development of SO<sub>2</sub> emissions is mainly influenced by coal consumption. From 2005 onwards biogas which has a considerable sulphur content is gaining in importance. In 2016 emissions from coal fired plants decreased considerably due to a stricter regulation related to the limit values and the reduction efficiency of desulfurization plants. The emission reduction in 2019 and 2020 is a result of the decreasing coal consumption. SO<sub>x</sub> emission trend shows the big dominance of lignite due to high Sulphur content of lignite fuels. However SO<sub>x</sub> emissions decrease more than lignite consumption does. Before the German Reunification in 1990, lignite fired public power plants in Eastern Germany didn't use flue gas desulphurisation plants. The implementation of stricter regulations in the New German Länder resulted in considerably decreasing emissions. In recent years the development of SO<sub>2</sub> emissions is mainly influenced by coal consumption. From 2005 onwards biogas which has a considerable sulphur content is gaining in importance. In 2016 emissions from coal fired plants decreased considerably due to a stricter regulation related to the limit values and the reduction efficiency of desulfurization plants. The emission reduction in 2019 and 2020 is a result of the decreasing coal consumption.
  
-=== Nitrogen Oxides - NOx ===+==== Nitrogen Oxides - NOx ====
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_nox.png?400|Annual NOx emissions from stationary combustion plants in 1.A.1.a}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_nox.png?400|Annual NOx emissions from stationary combustion plants in 1.A.1.a}}
  
 Nitrogen oxides emissions decreases due to declining lignite consumption in the early 1990s and due to NO<sub>x</sub> emission reduction measurements in the New German Länder. After 2002 the increasing consumption of natural gas biogas, wood and other biomass in the public sector gain influence and increases NO<sub>x</sub> emissions. The upward trend was only interrupted by the economic crises in 2009. From 2014 onwards NO<sub>x</sub> emissions decreases mainly caused by the decreasing hard coal consumption.    Nitrogen oxides emissions decreases due to declining lignite consumption in the early 1990s and due to NO<sub>x</sub> emission reduction measurements in the New German Länder. After 2002 the increasing consumption of natural gas biogas, wood and other biomass in the public sector gain influence and increases NO<sub>x</sub> emissions. The upward trend was only interrupted by the economic crises in 2009. From 2014 onwards NO<sub>x</sub> emissions decreases mainly caused by the decreasing hard coal consumption.   
  
-=== Particulate Matter - PM2.5 & PM10 & TSP ===+==== Particulate Matter - PM2.5 & PM10 & TSP ====
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pm2.5.png?400|Annual PM2.5 emissions from stationary combustion plants in 1.A.1.a}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pm2.5.png?400|Annual PM2.5 emissions from stationary combustion plants in 1.A.1.a}}
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pm10.png?400|Annual PM10 emissions from stationary combustion plants in 1.A.1.a}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pm10.png?400|Annual PM10 emissions from stationary combustion plants in 1.A.1.a}}
Line 106: Line 109:
 Similar to SO<sub>x</sub> emissions, Particulate Matter emissions decreases considerably since 1990 due to stricter regulations in eastern Germany. After 2002 PM<sub>10</sub> and PM<sub>2.5</sub> emission trends were influenced by the increasing use of biomass for public electricity and heat production. TSP and PM emissions from coal fired plants show a decreasing trend from 2005 onwards due to improvements of abatement systems. The remarkable Emission reduction in 2019 and 2020 is a result of the deacreasing coal consumption.  Similar to SO<sub>x</sub> emissions, Particulate Matter emissions decreases considerably since 1990 due to stricter regulations in eastern Germany. After 2002 PM<sub>10</sub> and PM<sub>2.5</sub> emission trends were influenced by the increasing use of biomass for public electricity and heat production. TSP and PM emissions from coal fired plants show a decreasing trend from 2005 onwards due to improvements of abatement systems. The remarkable Emission reduction in 2019 and 2020 is a result of the deacreasing coal consumption. 
  
-=== Priority Heavy metal - Pb & Hg & Cd ===+==== Priority Heavy metal - Pb & Hg & Cd ====
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pb.png?400|Annual Pb emissions from stationary combustion plants in 1.A.1.a}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pb.png?400|Annual Pb emissions from stationary combustion plants in 1.A.1.a}}
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_hg.png?400|Annual Hg emissions from stationary combustion plants in 1.A.1.a}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_hg.png?400|Annual Hg emissions from stationary combustion plants in 1.A.1.a}}
Line 113: Line 116:
 Emission trends of all priority heavy metals are mostly influenced by the emissions from lignite use. The reasons of the declining emissions are on the one hand the decreasing lignite consumption and on the other hand the implementation of stricter regulations in eastern Germany. Due to the fact, that heavy metal emission factors for waste incineration plants are constant, emission trends solely depend on coal consumption. In reality emission trends of all heavy metals would be more influenced by the emissions from waste fuels, since the emission factors for waste incineration plants in 1990 are expected to be high. In recent years emissions from Biomass combustion gain more and more influence on the trend. Emission trends of all priority heavy metals are mostly influenced by the emissions from lignite use. The reasons of the declining emissions are on the one hand the decreasing lignite consumption and on the other hand the implementation of stricter regulations in eastern Germany. Due to the fact, that heavy metal emission factors for waste incineration plants are constant, emission trends solely depend on coal consumption. In reality emission trends of all heavy metals would be more influenced by the emissions from waste fuels, since the emission factors for waste incineration plants in 1990 are expected to be high. In recent years emissions from Biomass combustion gain more and more influence on the trend.
  
-=== Persistent Organic Pollutants ===+==== Persistent Organic Pollutants ====
 {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pcddf.png?400|Annual PCDD/PCDF emissions from stationary combustion plants in 1.A.1.a}} {{:sector:energy:fuel_combustion:energy_industries:1a1a_em_pcddf.png?400|Annual PCDD/PCDF emissions from stationary combustion plants in 1.A.1.a}}
  
Line 120: Line 123:
 ===== Recalculations ===== ===== Recalculations =====
  
-Recalculations were necessary for the latest reference year (2019due to the availability of the National Energy Balance. Germany has a federal structure which causes a time lack of the National Energy Balance. Therefore recalculations are always necessary. A complete Revision of biomass data from 2003 - 2018 leds to recalculations of all pollutants.+Recalculations were necessary for 2019 due to the implementation of the now finalised National Energy Balance. 
  
 <WRAP center round info 60%> <WRAP center round info 60%>
-For **pollutant-specific information on recalculated emission estimates for Base Year and 2019**, please see the pollutant specific recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].+For **pollutant-specific information on recalculated emission estimates for Base Year and 2019**, please see the recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].
 </WRAP> </WRAP>