meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
sector:energy:fuel_combustion:small_combustion:mobile_small_combustion:agriculture_and_forestry:agriculture [2021/02/15 14:51] kotzullasector:energy:fuel_combustion:small_combustion:mobile_small_combustion:agriculture_and_forestry:agriculture [2022/02/08 07:56] – [Table] kotzulla
Line 14: Line 14:
 ====Activity data==== ====Activity data====
  
-Subsector-specific consumption data is included in the primary fuel-delivery data are available from NEB line 67: 'Commercial, trade, services and other consumers' (AGEB, 2019) [((bibcite 1))].+Subsector-specific consumption data is included in the primary fuel-delivery data are available from NEB line 67: 'Commercial, trade, services and other consumers' (AGEB, 2021) [(AGEB2021)].
  
 __Table 1: Sources for primary fuel-delivery data__ __Table 1: Sources for primary fuel-delivery data__
Line 20: Line 20:
 || as of 1995 || **AGEB** - National Energy Balance, line 67: 'Gewerbe, Handel, Dienstleistungen u. übrige Verbraucher'  || || as of 1995 || **AGEB** - National Energy Balance, line 67: 'Gewerbe, Handel, Dienstleistungen u. übrige Verbraucher'  ||
  
-Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2019) [((bibcite 2))], the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD-MM (Knörr et al. (2019b)) (cf. [[[ 1-a-4-mobile-combustion | NFR 1.A.4 - mobile ]]]).+Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2021) [(BAFA2021)], the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD-MM (Knörr et al. (2021b[(KNOERR2021b)(cf. NFR 1.A.4 - mobile).
  
 __Table 2: Annual contribution of agricultural vehicles and mobile machinery to the primary diesel<sup>1</sup> fuels delivery data provided in NEB line 67__ __Table 2: Annual contribution of agricultural vehicles and mobile machinery to the primary diesel<sup>1</sup> fuels delivery data provided in NEB line 67__
- **1990**   **1995**   **2000**   **2005**   **2010**   **2011**   **2012**   **2013**   **2014**   **2015**   **2016**   **2017**   **2018**   **2019**  | + 1990   1995   2000   2005  ^  2006  ^  2007  ^  2008  ^  2009  ^  2010   2011   2012   2013   2014   2015   2016   2017   2018   2019  ^  2020  ^ 
-     47,6% |      45,6% |      43,9% |      46,2% |      47,5% |      47,2% |      47,3% |      48,0% |      47,8% |      48,3% |      48,5% |      48,5% |      48,4% |      48,4% | + 47.6% |  45.6% |  43.9% |  46.2% |  45.1% |  45.9% |  46.4% |  47.2% |  47.5% |  47.2% |  47.3% |  48.0% |  47.8% |  48.3% |  48.5% |  48.5% |  48.4% |  48.4% |  48.3% | 
-<sup>1</sup>no gasoline used in agricultural vehicles and mobile machinery+<sup>1</sup> no gasoline used in agricultural vehicles and mobile machinery
  
 __Table 3: Annual mobile fuel consumption in agriculture, in terajoules__ __Table 3: Annual mobile fuel consumption in agriculture, in terajoules__
-|| ||= **1990** ||= **1995** ||= **2000** ||= **2005** ||= **2006** ||= **2007** ||= **2008** ||= **2009** ||= **2010** ||= **2011** ||= **2012** ||= **2013** ||= **2014** ||= **2015** ||= **2016** ||= **2017** ||= **2018** ||= +                      ^  1990   ^  1995   ^  2000   ^  2005   ^  2006   ^  2007   ^  2008   ^  2009   ^  2010   ^  2011   ^  2012   ^  2013   ^  2014   ^  2015   ^  2016   ^  2017   ^  2018   ^  2019    2020   ^ 
-||~ Diesel Oil ||> 54,142 ||> 45,674 ||> 44,513 ||> 41,008 ||> 40,612 ||> 41,272 ||> 42,122 ||> 44,888 ||> 45,058 ||> 45,918 ||> 45,047 ||> 46,774 ||> 48,683 ||> 51,410 ||> 53,710 ||> 55,311 ||> 51,731 ||> +Diesel Oil             53,263  44,622  41,696  37,942  37,462  38,245  39,332  42,296  42,024  42,864  42,137  44,531  46,259  48,905  51,027  52,561  49,006  49,679  50,450 
-||~ Biodiesel ||> 0 ||> 0 ||> 0 ||> 897 ||> 1,183 ||> 1,843 ||> 2,082 ||> 3,091 ||> 2,922 ||> 3,010 ||> 2,941 ||> 2,709 ||> 2,952 ||> 2,779 ||> 2,821 ||> 2,934 ||> 2,822 ||> +Biodiesel                   0 |       0 |       0 |   2,424   4,141   4,707   3,737   3,379   3,222   2,991   2,974   2,641   2,843   2,675   2,705   2,806   2,849   2,830   4,191 
-||= **Ʃ 1.A.4.c ii (i)**  ||~ 54,142 ||~ 45,674 ||~ 44,513 ||~ 41,905 ||~ 41,795 ||~ 43,116 ||~ 44,204 ||~ 47,980 ||~ 47,980 ||~ 48,928 ||~ 47,989 ||~ 49,482 ||~ 51,634 ||~ 54,190 ||~ 56,531 ||~ 58,245 ||~ 54,553 ||>+| **Ʃ 1.A.4.c ii (i)**   53,263 ^  44,622 ^  41,696 ^  40,366 ^  41,602 ^  42,952 ^  43,069 ^  45,675 ^  45,246 ^  45,855 ^  45,111 ^  47,172 ^  49,102 ^  51,580 ^  53,732 ^  55,367 ^  51,855 ^  52,509 ^  54,641 ^
    
-[[gallery size="medium"]] 
-: AD_1A4cii(a).PNG 
-: AD_1A4cii(a)_bio.PNG 
-[[/gallery]] 
- 
 ==== Emission factors ==== ==== Emission factors ====
  
 The emission factors applied here are of rather different quality: The emission factors applied here are of rather different quality:
-For all **main pollutants**, **carbon monoxide** and **particulate matter**, annual IEF modelled within TREMOD MM [((bibcite 3))] are used, representing the sector's vehicle-fleet composition, the development of mitigation technologies and the effect of fuel-quality legislation.   +For all **main pollutants**, **carbon monoxide** and **particulate matter**, annual IEF modelled within TREMOD MM are used, representing the sector's vehicle-fleet composition, the development of mitigation technologies and the effect of fuel-quality legislation.  
- +
-__Table 3: Annual coutry-specific emission factors from TREMOD MM^^1^^__ +
-|| ||= **1990** ||= **1995** ||= **2000** ||= **2005** ||= **2006** ||= **2007** ||= **2008** ||= **2009** ||= **2010** ||= **2011** ||= **2012** ||= **2013** ||= **2014** ||= **2015** ||= **2016** ||= **2017** ||= **2018** ||= +
-|| NH,,3,, ||> 0.152 ||> 0.155 ||> 0.158 ||> 0.160 ||> 0.160 ||> 0.161 ||> 0.161 ||> 0.162 ||> 0.163 ||> 0.163 ||> 0.163 ||> 0.163 ||> 0.164 ||> 0.164 ||> 0.164 ||> 0.164 ||> 0.164 ||> +
-|| NMVOC ||> 261 ||> 237 ||> 216 ||> 182 ||> 175 ||> 168 ||> 162 ||> 146 ||> 139 ||> 132 ||> 126 ||> 119 ||> 112 ||> 105 ||> 99 ||> 93 ||> 88 ||> +
-|| NO,,x,, ||> 869 ||> 887 ||> 917 ||> 846 ||> 825 ||> 805 ||> 780 ||> 744 ||> 713 ||> 686 ||> 660 ||> 632 ||> 604 ||> 575 ||> 544 ||> 514 ||> 487 ||> +
-|| SO,,x,, ||> 79.6 ||> 60.5 ||> 14.0 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> +
-|| PM^^2^^ ||> 238 ||> 211 ||> 184 ||> 152 ||> 146 ||> 140 ||> 134 ||> 116 ||> 110 ||> 105 ||> 99 ||> 93 ||> 87 ||> 82 ||> 77 ||> 72 ||> 68 ||> +
-|| BC^^3^^ ||> 130 ||> 115 ||> 100 ||> 85 ||> 81 ||> 78 ||> 76 ||> 67 ||> 64 ||> 61 ||> 59 ||> 56 ||> 52 ||> 49 ||> 46 ||> 44 ||> 41 ||> +
-|| CO ||> 896 ||> 853 ||> 813 ||> 723 ||> 704 ||> 687 ||> 670 ||> 624 ||> 603 ||> 584 ||> 564 ||> 543 ||> 522 ||> 504 ||> 486 ||> 471 ||> 457 ||> +
-^^1^^ due to lack of better information: similar EF are applied for fossil diesel oil and biodiesel +
-^^2^^ EF(PM,,2.5,,) also applied for PM,,10,, and TSP (assumption: > 99% of TSP from diesel oil combustion consists of PM,,2.5,,+
-^^3^^ estimated from f-BC as provided in [((bibcite 4))] +
- +
-> **NOTE:** With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly.[[footnote]] During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions. [[/footnote]] +
- +
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to [[[ appendix2.3-HM-from-mobile-sources | Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources]]] and [[[ appendix2.4-POPs-from-mobile-sources | Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources ]]]. +
- +
-[!-- +
- +
-+ __Discussion of emission trends__ +
- +
-++ Unregulated pollutants (NH,,3,,, HMs, POPs) +
- +
-For all unregulated pollutants, emission trends directly follow the trend in fuel consumption. +
- +
-[[gallery size="medium"]] +
-: EM_1A2gvii_NH3.PNG +
-: EM_1A2gvii_Cd.PNG +
-[[/gallery]] +
- +
-++ Regulated pollutants (NO,,x,,, SO,,2,,) +
- +
-For all regulated pollutants, emission trends follow not only the trend in fuel consumption but also reflect the impact of fuel-quality and exhaust-emission legislation. +
- +
-[[gallery size="medium"]] +
-: EM_1A2gvii_NOx.PNG +
-: EM_1A2gvii_SOx.PNG +
-[[/gallery]] +
- +
-++ Particulate matter (PM,,2.5,,, PM,,10,,, and TSP) +
- +
-Over-all PM emissions are by far dominated by emissions from diesel oil combustion with the falling trend basically following the decline in fuel consumption between 2000 and 2005.  +
-Nonetheless, the decrease of the over-all emission trend was and still is amplified by the expanding use of particle filters especially to eliminate soot emissions. +
- +
-Additional contributors such as the impact of TSP emissions from the use of leaded gasoline (until 1997) have no significant effect onto over-all emission estimates.+
  
-[[gallery size="medium"]] +__Table 3Annual country-specific emission factors<sup>1</sup>, in kg/TJ__ 
-EM_1A2gvii_PM.PNG +|                  1990  ^  1995  ^  2000  ^  2005  ^  2006  ^  2007  ^  2008  ^  2009  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^ 
-EM_1A2gvii_TSP(Pb).PNG +^ NH<sub>3</sub>  |   0,15 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 |   0,16 | 
-[[/gallery]]+^ NMVOC              258 |    232 |    205 |    165 |    157 |    150 |    144 |    131 |    124 |    118 |    112 |    106 |   99,7 |   93,8 |   88,6 |   83,8 |   79,1 |   74,8 |   70,6 | 
 +^ NO<sub>x</sub>  |    874 |    886 |    916 |    832 |    808 |    784 |    760 |    713 |    682 |    655 |    629 |    605 |    581 |    560 |    541 |    523 |    506 |    489 |    471 | 
 +^ SO<sub>x</sub>  |   79,6 |   60,5 |   14,0 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 |   0,37 | 
 +^ PM<sup>2</sup>  |    125 |    109 |   93,1 |   74,7 |   71,0 |   67,8 |   65,2 |   60,1 |   57,4 |   54,8 |   52,4 |   50,1 |   47,4 |   44,8 |   42,2 |   39,8 |   37,5 |   35,4 |   33,2 | 
 +^ BC<sup>3</sup>  |    229 |    201 |    171 |    134 |    126 |    119 |    114 |    103 |   97,1 |   91,5 |   86,2 |   81,5 |   76,3 |   71,4 |   66,9 |   62,7 |   58,6 |   54,9 |   51,3 | 
 +^ CO              |    882 |    834 |    779 |    674 |    653 |    633 |    616 |    575 |    555 |    536 |    518 |    502 |    484 |    468 |    453 |    441 |    428 |    416 |    403 | 
 +<sup>1</sup> due to lack of better informationsimilar EF are applied for fossil and biofuels \\ 
 +<sup>2</sup> EF(PM<sub>2.5</sub>also applied for PM<sub>10</sub> and TSP (assumption: > 99% of TSP consists of PM<sub>2.5</sub>)\\ 
 +<sup>3</sup> estimated via a f-BCs as provided in [(EMEPEEA2019)], Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery \\
  
---]+> **NOTE:** With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.
  
-+ __Recalculations__+> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.
  
-Revisions in **activity data** result from slightly adapted NCVs and biofuel shares (2015-2017) as well as the implementation of primary activity data from the now finalised NEB 2017.+===== Recalculations =====
  
-__Table 5: Revised annual mobile fuel consumption in agriculture, 2015-2017, in terajoules__ +With **emissions factors** unrevisedrecalculated emission estimates result solely from the implementation of the now finalized NEB 2019.
-||=                    ||= **2015** ||= **2016** ||= **2017** ||= +
-||~ Submission 2020 ||> 54,190 ||> 56,531 ||> 58,245 ||> +
-||~ Submission 2019 ||> 54,188 ||> 56,529 ||> 57,905 ||> +
-||~ absolute change ||>     ||>       ||> 340    ||> +
-||~ relative change ||> 0.003% ||> 0.004% ||> 0.583% ||>+
  
-As, in contrastall **emission factors** remain unrevised compared to last year's susbmissionemission estimates for the years as of 2015 change in accordance with the underlying activity data.+__Table 4: Revised diesel-oil consumption 2019, in [TJ]__ 
 +|                      ^  2019   ^ 
 +^ current submission    52,509 | 
 +^ previous submission  |  52,415 | 
 +^ absolute change         94.2 | 
 +^ relative change      |   0.18% |
  
 +<WRAP center round info 60%>
 +For more information on recalculated emission estimates reported for Base Year and 2019, please see the pollutant-specific recalculation tables following chapter [[general:recalculations:start| 8.1 - Recalculations]].
 +</WRAP>
  
-> For **information on the impacts on emission estimates for Base Year and 2017**, please see the pollutant specific recalculation tables following chapter [[[recalculations | 8.1 - Recalculations]]].+===== Planned improvements =====
  
-------+Besides a routine revision of the underlying model, no specific improvements are planned. 
  
-[[bibliography]] +[(AGEB2021> AGEB, 2021: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, (Aufruf: 23.11.2021), Köln & Berlin, 2021.)] 
-: 1 : AGEB, 2019: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, (Aufruf: 29.11.2019), Köln & Berlin, 2019+[(BAFA2021> BAFA, 2021: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; 
-: 2 : BAFA, 2019: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland;  +URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2018_dezember.html, Eschborn, 2021.)]    
-URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2017_dezember.html, Eschborn, 2019.    +[(KNOERR2021b> Knörr et al. (2021b): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2021, Heidelberg, 2021.)] 
-: 3 : Knörr et al. (2018b): Knörr, W., Heidt, C., Gores, S., & Bergk, F. (2019b): ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2018, Heidelberg, 2019+[(EMEPEEA2019> EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.)] 
-: 4 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019. +[(KNOERR2009> Knörr et al. (2009): KnörrW.HeldstabJ.& Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)]
-: 5 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des UmweltbundesamtesFKZ 205 67 444UBA Texte | 01/2008January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer +
-[[/bibliography]]+