meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:small_combustion:mobile_small_combustion:agriculture_and_forestry:agriculture [2021/02/15 15:20] kotzullasector:energy:fuel_combustion:small_combustion:mobile_small_combustion:agriculture_and_forestry:agriculture [2022/03/22 09:49] (current) – [Recalculations] kotzulla
Line 14: Line 14:
 ====Activity data==== ====Activity data====
  
-Subsector-specific consumption data is included in the primary fuel-delivery data are available from NEB line 67: 'Commercial, trade, services and other consumers' (AGEB, 2019) [((bibcite 1))].+Subsector-specific consumption data is included in the primary fuel-delivery data are available from NEB line 67: 'Commercial, trade, services and other consumers' (AGEB, 2021) [(AGEB2021)].
  
 __Table 1: Sources for primary fuel-delivery data__ __Table 1: Sources for primary fuel-delivery data__
Line 20: Line 20:
 || as of 1995 || **AGEB** - National Energy Balance, line 67: 'Gewerbe, Handel, Dienstleistungen u. übrige Verbraucher'  || || as of 1995 || **AGEB** - National Energy Balance, line 67: 'Gewerbe, Handel, Dienstleistungen u. übrige Verbraucher'  ||
  
-Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2019) [((bibcite 2))], the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD-MM (Knörr et al. (2019b)) (cf. [[[ 1-a-4-mobile-combustion | NFR 1.A.4 - mobile ]]]).+Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2021) [(BAFA2021)], the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD-MM (Knörr et al. (2021b[(KNOERR2021b)(cf. NFR 1.A.4 - mobile).
  
 __Table 2: Annual contribution of agricultural vehicles and mobile machinery to the primary diesel<sup>1</sup> fuels delivery data provided in NEB line 67__ __Table 2: Annual contribution of agricultural vehicles and mobile machinery to the primary diesel<sup>1</sup> fuels delivery data provided in NEB line 67__
- **1990**   **1995**   **2000**   **2005**   **2010**   **2011**   **2012**   **2013**   **2014**   **2015**   **2016**   **2017**   **2018**   **2019**  | + 1990   1995   2000   2005  ^  2006  ^  2007  ^  2008  ^  2009  ^  2010   2011   2012   2013   2014   2015   2016   2017   2018   2019  ^  2020  ^ 
-     47,6% |      45,6% |      43,9% |      46,2% |      47,5% |      47,2% |      47,3% |      48,0% |      47,8% |      48,3% |      48,5% |      48,5% |      48,4% |      48,4% | + 47.6% |  45.6% |  43.9% |  46.2% |  45.1% |  45.9% |  46.4% |  47.2% |  47.5% |  47.2% |  47.3% |  48.0% |  47.8% |  48.3% |  48.5% |  48.5% |  48.4% |  48.4% |  48.3% | 
-<sup>1</sup>no gasoline used in agricultural vehicles and mobile machinery+<sup>1</sup> no gasoline used in agricultural vehicles and mobile machinery
  
 __Table 3: Annual mobile fuel consumption in agriculture, in terajoules__ __Table 3: Annual mobile fuel consumption in agriculture, in terajoules__
-          **1990**  |  **1995**  |  **2000**  |  **2005**   **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  |  **2019**  | +                      ^  1990   ^  1995   ^  2000   ^  2005   ^  2006    2007    2008    2009    2010   ^  2011   ^  2012   ^  2013   ^  2014   ^  2015   ^  2016   ^  2017   ^  2018   ^  2019   ^  2020   ^ 
-^ Diesel Oil         47,6%      45,6%      43,9%      46,2%      47,5%      47,2%      47,3%      48,0%      47,8%      48,3%      48,5%      48,5%      48,4%      48,4% +^ Diesel Oil             53,263  44,622  41,696  37,942  37,462  38,245  39,332  42,296  42,024  42,864  42,137  44,531  46,259  48,905 |  51,027 |  52,561 |  49,006 |  49,679 |  50,450 
-^ Biodiesel       47,6%      45,6%      43,9%      46,2%      47,5%      47,2     47,3%      48,0%      47,8%      48,3%      48,5%      48,5%      48,4%      48,4+^ Biodiesel                   0 |       0 |       0 |   2,424   4,141   4,707   3,737   3,379   3,222 |   2,991   2,974   2,641   2,843   2,675   2,705   2,806   2,849   2,830 |   4,191 
-| **Ʃ 1.A.4.c ii (i)**     |      47,6% |      45,6% |      43,9% |      46,2% |      47,5% |      47,2% |      47,3% |      48,0% |      47,8% |      48,3% |      48,5% |      48,5% |      48,4% |      48,4% |+| **Ʃ 1.A.4.c ii (i)**   53,263 ^  44,622 ^  41,696 ^  40,366 ^  41,602 ^  42,952 ^  43,069 ^  45,675 ^  45,246 ^  45,855 ^  45,111 ^  47,172 ^  49,102 ^  51,580 ^  53,732 ^  55,367 ^  51,855 ^  52,509 ^  54,641 ^
    
 ==== Emission factors ==== ==== Emission factors ====
  
 The emission factors applied here are of rather different quality: The emission factors applied here are of rather different quality:
-For all **main pollutants**, **carbon monoxide** and **particulate matter**, annual IEF modelled within TREMOD MM [((bibcite 3))] are used, representing the sector's vehicle-fleet composition, the development of mitigation technologies and the effect of fuel-quality legislation.  +For all **main pollutants**, **carbon monoxide** and **particulate matter**, annual IEF modelled within TREMOD MM are used, representing the sector's vehicle-fleet composition, the development of mitigation technologies and the effect of fuel-quality legislation.  
  
-__Table 3: Annual coutry-specific emission factors from TREMOD MM^^1^^__ +__Table 3: Annual country-specific emission factors<sup>1</sup>, in kg/TJ__ 
-|| ||= **1990** ||= **1995** ||= **2000** ||= **2005** ||= **2006** ||= **2007** ||= **2008** ||= **2009** ||= **2010** ||= **2011** ||= **2012** ||= **2013** ||= **2014** ||= **2015** ||= **2016** ||= **2017** ||= **2018** ||= +                ^  1990  ^  1995  ^  2000  ^  2005  ^  2006  ^  2007  ^  2008  ^  2009  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018   2019  ^  2020  ^ 
-|| NH,,3,, ||> 0.152 ||> 0.155 ||> 0.158 ||> 0.160 ||> 0.160 ||> 0.161 ||> 0.161 ||> 0.162 ||> 0.163 ||> 0.163 ||> 0.163 ||> 0.163 ||> 0.164 ||> 0.164 ||> 0.164 ||> 0.164 ||> 0.164 ||> +NH<sub>3</sub>  |   0,15 |   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16 
-|| NMVOC ||> 261 ||> 237 ||> 216 ||> 182 ||> 175 ||> 168 ||> 162 ||> 146 ||> 139 ||> 132 ||> 126 ||> 119 ||> 112 ||> 105 ||> 99 ||> 93 ||> 88 ||+NMVOC              258    232    205    165    157    150    144    131    124    118    112 |    106   99,7   93,8   88,6   83,8   79,1   74,8   70,| 
-|| NO,,x,, ||> 869 ||> 887 ||> 917 ||> 846 ||> 825 ||> 805 ||> 780 ||> 744 ||> 713 ||> 686 ||> 660 ||> 632 ||> 604 ||> 575 ||> 544 ||> 514 ||> 487 ||> +^ NO<sub>x</sub    874    886    916    832    808    784    760    713 |    682    655    629    605    581    560    541    523    506    489    471 
-|| SO,,x,, ||> 79.6 ||> 60.5 ||> 14.0 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> 0.4 ||> +SO<sub>x</sub>    79,6 |   60,5 |   14,0 |   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37   0,37 
-|| PM^^2^^ ||> 238 ||> 211 ||> 184 ||> 152 ||> 146 ||> 140 ||> 134 ||> 116 ||> 110 ||> 105 ||> 99 ||> 93 ||> 87 ||> 82 ||> 77 ||> 72 ||> 68 ||+PM<sup>2</sup    125    109   93,1   74,7   71,0   67,8   65,2   60,1   57,4   54,8   52,4   50,1   47,4   44,8   42,2   39,8   37,5   35,4   33,2 | 
-|| BC^^3^^ ||> 130 ||> 115 ||> 100 ||> 85 ||> 81 ||> 78 ||> 76 ||> 67 ||> 64 ||> 61 ||> 59 ||> 56 ||> 52 ||> 49 ||> 46 ||> 44 ||> 41 ||> +^ BC<sup>3</sup    229    201    171    134    126    119    114    103   97,1   91,5   86,2   81,5   76,3   71,4   66,9   62,7   58,6   54,9   51,3 
-|| CO ||> 896 ||> 853 ||> 813 ||> 723 ||> 704 ||> 687 ||> 670 ||> 624 ||> 603 ||> 584 ||> 564 ||> 543 ||> 522 ||> 504 ||> 486 ||> 471 ||> 457 ||> +CO                 882    834    779    674    653    633    616    575    555    536    518    502    484    468    453    441    428    416    403 | 
-^^1^^ due to lack of better information: similar EF are applied for fossil diesel oil and biodiesel +<sup>1</sup> due to lack of better information: similar EF are applied for fossil and biofuels \\ 
-^^2^^ EF(PM,,2.5,,) also applied for PM,,10,, and TSP (assumption: > 99% of TSP from diesel oil combustion consists of PM,,2.5,,+<sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub> and TSP (assumption: > 99% of TSP consists of PM<sub>2.5</sub>)\\ 
-^^3^^ estimated from f-BC as provided in [((bibcite 4))]+<sup>3</sup> estimated via a f-BCs as provided in [(EMEPEEA2019)], Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery \\
  
-> **NOTE:** With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly.[[footnote]] During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions. [[/footnote]]+> **NOTE:** With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.
  
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to [[[ appendix2.3-HM-from-mobile-sources | Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources]]] and [[[ appendix2.4-POPs-from-mobile-sources | Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources ]]].+> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.
  
-[!--+===== Recalculations =====
  
-+ __Discussion of emission trends__+With **emissions factors** unrevised, recalculated emission estimates result solely from the implementation of the now finalized NEB 2019.
  
-++ Unregulated pollutants (NH,,3,,, HMs, POPs)+__Table 4: Revised diesel-oil consumption 2019in [TJ]__ 
 +|                      ^  2019   ^ 
 +^ current submission    52,509 | 
 +^ previous submission  |  52,415 | 
 +^ absolute change      |    94.2 | 
 +^ relative change      |   0.18% |
  
-For all unregulated pollutants, emission trends directly follow the trend in fuel consumption.+<WRAP center round info 60%> 
 +For **pollutant-specific information on recalculated emission estimates reported for Base Year and 2019**, please see the recalculation tables following chapter [[general:recalculations:start| 8.1 - Recalculations]]. 
 +</WRAP>
  
-[[gallery size="medium"]] +===== Planned improvements =====
-: EM_1A2gvii_NH3.PNG +
-: EM_1A2gvii_Cd.PNG +
-[[/gallery]]+
  
-++ Regulated pollutants (NO,,x,,, SO,,2,,)+Besides a routine revision of the underlying modelno specific improvements are planned. 
  
-For all regulated pollutants, emission trends follow not only the trend in fuel consumption but also reflect the impact of fuel-quality and exhaust-emission legislation. +[(AGEB2021> AGEB, 2021: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, (Aufruf: 23.11.2021), Köln & Berlin, 2021.)] 
- +[(BAFA2021> BAFA, 2021: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; 
-[[gallery size="medium"]] +URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2018_dezember.html, Eschborn, 2021.)]    
-: EM_1A2gvii_NOx.PNG +[(KNOERR2021b> Knörr et al. (2021b): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2021, Heidelberg, 2021.)] 
-: EM_1A2gvii_SOx.PNG +[(EMEPEEA2019> EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.)] 
-[[/gallery]] +[(KNOERR2009> Knörr et al. (2009): KnörrW.HeldstabJ.& Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)]
- +
-++ Particulate matter (PM,,2.5,,, PM,,10,,, and TSP) +
- +
-Over-all PM emissions are by far dominated by emissions from diesel oil combustion with the falling trend basically following the decline in fuel consumption between 2000 and 2005.  +
-Nonetheless, the decrease of the over-all emission trend was and still is amplified by the expanding use of particle filters especially to eliminate soot emissions. +
- +
-Additional contributors such as the impact of TSP emissions from the use of leaded gasoline (until 1997) have no significant effect onto over-all emission estimates. +
- +
-[[gallery size="medium"]] +
-: EM_1A2gvii_PM.PNG +
-: EM_1A2gvii_TSP(Pb).PNG +
-[[/gallery]] +
- +
---] +
- +
-+ __Recalculations__ +
- +
-Revisions in **activity data** result from slightly adapted NCVs and biofuel shares (2015-2017) as well as the implementation of primary activity data from the now finalised NEB 2017. +
- +
-__Table 5: Revised annual mobile fuel consumption in agriculture, 2015-2017, in terajoules__ +
-||=                    ||= **2015** ||= **2016** ||= **2017** ||= +
-||~ Submission 2020 ||> 54,190 ||> 56,531 ||> 58,245 ||> +
-||~ Submission 2019 ||> 54,188 ||> 56,529 ||> 57,905 ||> +
-||~ absolute change ||>     ||>       ||> 340    ||> +
-||~ relative change ||> 0.003% ||> 0.004% ||> 0.583% ||> +
- +
-As, in contrast, all **emission factors** remain unrevised compared to last year's susbmission, emission estimates for the years as of 2015 change in accordance with the underlying activity data. +
- +
- +
-> For **information on the impacts on emission estimates for Base Year and 2017**, please see the pollutant specific recalculation tables following chapter [[[recalculations | 8.1 - Recalculations]]]. +
- +
------- +
- +
-[[bibliography]] +
-: 1 : AGEB, 2019: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, (Aufruf: 29.11.2019), Köln & Berlin, 2019+
-: 2 : BAFA, 2019: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland;  +
-URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2017_dezember.html, Eschborn, 2019.    +
-: 3 : Knörr et al. (2018b): Knörr, W., Heidt, C., Gores, S., & Bergk, F. (2019b): ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2018, Heidelberg, 2019+
-: 4 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019. +
-: 5 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des UmweltbundesamtesFKZ 205 67 444UBA Texte | 01/2008January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer +
-[[/bibliography]]+