1.A.4.c ii (b) - Off-road Vehicles and other Machinery: Forestry

Short description

Under sub-category 1.A.4.c ii (b) fuel combustion activities and resulting emissions from off-road vehicles and mobile machinery used in forestry are reported.

NFR-Code Source category Method AD EF Key Category Analysis
1.A.4.c ii (a) Off-road Vehicles and Other Machinery: Agriculture T1, T2 NS, M CS, D, M see superordinate chapter

Methodology

Activity data

Primary activity data (PAD) are taken from National Energy Balances (NEBs) line 67: 'Commercial, trade, services and other consumers' (AGEB, 2021) 1).

Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2021) 2), the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD MM (Knörr et al. (2021b) 3) (cf. NFR 1.A.4 - mobile).

Table 1: Annual contribution of forestry vehicles and mobile machinery to the primary fuel delivery data provided in NEB line 67

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Diesel fuels
2.41% 1.36% 2.16% 2.88% 2.92% 2.99% 2.77% 2.76% 2.81% 2.89% 2.72% 2.79% 3.35% 3.54% 4.16%
Gasoline fuels
68.5% 40.3% 44.9% 41.4% 35.5% 35.6% 33.1% 32.9% 33.1% 33.3% 31.6% 31.9% 35.8% 36.8% 40.4%

source: own estimates based on TREMOD MM

Table 2: Annual mobile fuel consumption in forestry, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Diesel Oil 2,695 1,332 2,051 2,368 2,583 2,712 2,472 2,559 2,718 2,931 2,865 3,024 3,393 3,631 4,341
Biodiesel 3,093 3,004 3,325 3,029 1,568 1,430 415 405 432 1,679 1,591 1,601 1,795 1,707 2,131
Gasoline 0 0 0 151 198 189 174 152 167 160 152 161 197 207 361
Biogasoline 0 0 0 20.8 60.6 58.6 18.4 17.3 18.8 72.8 69.1 67.5 80.7 73.6 97.3
Ʃ 1.A.4.c ii (ii) 5,788 4,336 5,375 5,569 4,409 4,390 3,079 3,133 3,336 4,843 4,677 4,853 5,465 5,619 6,930

Emission factors

The emission factors used here are of rather different quality: For all main pollutants, carbon monoxide and particulate matter, annually changing values computed within TREMOD MM (Knörr et al. (2021b)) 4) are used, representing the development of mitigation technologies and th effect of fuel-quality legislation.

Table 3: Annual coutry-specific emission factors from TREMOD MM1

1990 1991 1992 1993 1994 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
DIESEL FUELS
NH3 0,16 0,17 0,17 0,17 0,17 0,17 0,17 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18
NMVOC 191 185 177 169 162 157 130 80,2 46,5 42,4 38,7 35,0 31,4 28,1 25,3 22,9 20,9 19,1 17,6
NOx 982 993 1.012 1.023 1.039 1.053 1.071 834 543 495 454 422 397 375 351 326 305 285 264
SOx 79,6 60,9 60,9 60,5 60,5 60,5 14,0 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
BC5 84,6 81,1 75,8 70,2 65,4 60,8 41,8 27,7 21,6 21,0 20,4 19,3 17,8 16,1 14,5 13,0 11,5 10,1 8,73
PM4 155 148 139 129 120 112 75,8 45,3 30,4 28,8 27,3 25,3 23,1 20,8 18,6 16,5 14,6 12,8 11,1
CO 689 676 661 643 631 619 554 395 282 269 258 252 249 248 249 251 254 256 254
GASOLINE FUELS
NH3 0,075 0,079 0,083 0,083 0,083 0,083 0,083 0,086 0,087 0,088 0,091 0,092 0,092 0,092 0,092 0,092 0,092 0,092 0,092
NMVOC2 3,04 7,54 9,03 8,87 7,25 6,37 4,67 4,56 4,83 4,74 5,23 5,22 5,11 5,00 5,32 5,19 4,30 4,07 4,07
NMVOC3 5795 5491 5099 5099 5099 5099 5099 5320 5424 4858 3596 2897 2897 2897 2897 2897 2897 2901 2910
NOx 42,6 45,9 49,4 49,4 49,4 49,4 49,4 76,4 86,0 78,5 63,1 55,1 55,1 55,1 55,1 55,1 55,1 55,1 55,1
SOx 10,1 10,1 10,1 10,1 10,1 8,27 3,22 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
BC5 5,09 4,44 3,73 3,73 3,73 3,73 3,73 3,86 3,91 3,96 4,08 4,13 4,13 4,13 4,13 4,13 4,13 4,13 4,13
PM4 102 89 75 75 75 74,6 74,6 77,2 78,1 79,2 81,5 82,7 82,7 82,7 82,7 82,7 82,7 82,7 82,7
TSP6 2,35 1,68 1,36 1,22 0,97 0,82 NA NA NA NA NA NA NA NA NA NA NA NA NA
CO 16813 15931 14796 14796 14796 14796 14796 15371 15609 15827 16279 16514 16514 16514 16514 16514 16514 16514 16514
Pb 1,47 1,05 0,85 0,76 0,60 0,52 NA NA NA NA NA NA NA NA NA NA NA NA NA

1 due to lack of better information: similar EF are applied for fossil and biofuels
2 from fuel combustion
3 from gasoline evaporation
4 EF(PM2.5) also applied for PM10 and TSP (assumption: > 99% of TSP consists of PM2.5)
5 estimated via a f-BCs as provided in 5), Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery
6 from leaded gasoline (until 1997)

With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.

Recalculations

Revisions in activity data result from the revision of the gasoline-consumption in military ground-vehicles as well as the implementation of the now finalised NEB 2019.

Table 5: Revised activity data, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
DIESEL FUELS
current submission 2.695 1.332 2.051 2.519 2.874 3.662 2.617 2.417 2.781 2.902 2.646 2.711 2.886 3.092 3.016 3.185 3.590 3.838
previous submission 2.695 1.332 2.051 2.519 2.874 3.662 2.617 2.417 2.781 2.902 2.646 2.711 2.886 3.092 3.016 3.185 3.590 3.831
absolute change 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 -0,20 6,88
relative change 0,00% 0,00% 0,00% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% -0,01% 0,18%
GASOLINE FUELS
current submission 3.093 3.004 3.325 3.050 3.104 3.522 2.799 1.552 1.629 1.488 433 422 451 1.752 1.660 1.668 1.875 1.781
previous submission 3.093 3.004 3.325 3.043 3.090 3.511 2.786 1.534 1.603 1.462 409 400 430 1.732 1.644 1.655 1.819 1.814
absolute change 0,00 0,00 0,00 7,6 14,2 11,8 13,8 18,2 25,9 26,6 23,76 22,37 20,61 19,3 16,5 13,4 56,5 -33,4
relative change 0,00% 0,00% 0,00% 0,25% 0,46% 0,34% 0,50% 1,19% 1,62% 1,82% 5,81% 5,60% 4,79% 1,11% 1,00% 0,81% 3,11% -1,84%
OVER-ALL FUEL CONSUMPTION
current submission 5.788 4.336 5.375 5.569 5.977 7.184 5.417 3.969 4.409 4.390 3.079 3.133 3.336 4.843 4.677 4.853 5.465 5.619
previous submission 5.788 4.336 5.375 5.562 5.963 7.173 5.403 3.951 4.383 4.364 3.055 3.110 3.316 4.824 4.660 4.840 5.409 5.646
absolute change 0,00 0,00 0,00 7,57 14,18 11,81 13,81 18,23 25,9 26,6 23,8 22,4 20,6 19,3 16,5 13,4 56,3 -26,5
relative change 0,00% 0,00% 0,00% 0,14% 0,24% 0,16% 0,26% 0,46% 0,59% 0,61% 0,78% 0,72% 0,62% 0,40% 0,35% 0,28% 1,04% -0,47%

In contrast, all emission factors remain unrevised compared to last year's susbmission..

For pollutant-specific information on recalculated emission estimates for Base Year and 2019, please see the recalculation tables following chapter 8.1 - Recalculations.


1) AGEB, 2021: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, (Aufruf: 23.11.2021), Köln & Berlin, 2021.
2) BAFA, 2021: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2020_dezember.html, Eschborn, 2021.
3), 4) Knörr et al. (2021b): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2021, Heidelberg, 2021.
5) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.