meta data for this page
  •  

This is an old revision of the document!


1.A.4.a ii - Commercial / Institutional: Mobile

Short description

In NFR 1.A.4.a ii - Commercial/institutional: Mobile fuel combustion activities and emissions from non-road diesel and LPG-driven (forklifters) vehicles used in the commercial and institutional sector are taken into account.

Method AD EF Key Category Analysis
T1, T2 NS, M CS, D, M no key category

Methodology

Activity data

Sector-specific diesel consumption data are included in the primary fuel-delivery data available from NEB line 67: 'Commercial, trade, services and other consumers' (AGEB, 2019) 1).

Table 1: Sources for primary fuel-deliveries data

through 1994 NEB line 79: 'Households and small consumers'
as of 1995 NEB line 67: 'Commercial, trade, services and other consumers'

Following the deduction of diesel oil inputs for military vehicles as provided in (BAFA, 2019) 2), the remaining amounts of diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4.a ii) as well as agriculture and forestry (1.A.4.c ii) based upon annual shares derived from (Knörr et al. (2019b)) 3) (cf. NFR 1.A.4 - mobile ]).

Table 2: Annual contribution of NFR 1.A.4.a ii to the over-all amounts of diesel oil provided in NEB line 67

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
7,01% 6,65% 6,99% 7,18% 6,52% 6,36% 6,21% 5,96% 5,82% 5,73% 5,83% 5,78% 5,68% 5,59%

source: (Knörr et al. (2019b)) 4)

As the NEB does not distinguish into specific biofuels, consumption data for biodiesel are calculated by applying Germany's official annual shares of biodiesel blended to fossil diesel oil.

In contrast, for LPG-driven forklifters, specific consumption data is modelled in TREMOD-MM. These amounts are then subtracted from the over-all amount available from NEB line 67 to estimate the amount of LPG used in stationary combustion.

Table 3: Annual fuel consumption, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel Oil 7.847 6.508 6.646 5.894 5.773 5.770 5.533 5.524 5.629 5.810 6.145 6.257 5.749 5.726
Biodiesel 0.00 0.00 0.00 377 443 403 390 328 346 318 326 334 334 326
LPG 2.787 3.450 4.261 4.533 4.629 4.557 4.484 4.409 4.333 4.256 4.336 4.301 4.264 4.213
Ʃ 1.A.4.a ii 10.634 9.958 10.907 10.803 10.844 10.729 10.407 10.261 10.307 10.383 10.807 10.892 10.347 10.347

gallery size="medium" : 1A4aii_AD.png : 1A4aii_AD_bio.png gallery

Emission factors

The emission factors used here are of rather different quality: Basically, for all main pollutants, carbon monoxide and particulate matter, annual IEF modelled within 5) are used, representing the sector's vehicle-fleet composition, the development of mitigation technologies and the effect of fuel-quality legislation.

As no such specific EF are available for biofuels, the values used for diesel oil are applied to biodiesel, too.

Table 4: Annual country-specific emission factors from TREMOD MM, in kg/TJ

= 1990 = 1995 = 2000 = 2005 = 2006 = 2007 = 2008 = 2009 = 2010 = 2011 = 2012 = 2013 = 2014 = 2015 = 2016 = 2017 = 2018
< Diesel fuels1
~ NH,,3,, > 0.15 > 0.16 > 0.16 > 0.16 > 0.16 > 0.16 > 0.16 > 0.16 > 0.16 > 0.17 > 0.17 > 0.17 > 0.17 > 0.17 > 0.17 > 0.17 > 0.17
~ NMVOC > 247 > 223 > 197 > 140 > 129 > 119 > 110 > 101 > 93.3 > 85.9 > 78.8 > 71.5 > 64.6 > 58.6 > 53.8 > 50.0 > 46.9
~ NO,,x,, > 999 > 1.026 > 1.004 > 835 > 796 > 756 > 716 > 676 > 636 > 597 > 561 > 526 > 493 > 462 > 430 > 399 > 370
~ SO,,x,, > 79.6 > 60.5 > 14.0 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37 > 0.37
~ PM2 > 194 > 161 > 134 > 93.8 > 86.3 > 79.7 > 74.0 > 69.1 > 64.6 > 60.3 > 56.1 > 51.6 > 47.0 > 42.8 > 39.2 > 36.4 > 34.1
~ BC3 > 107 > 88.7 > 74.4 > 55.4 > 51.8 > 48.8 > 46.3 > 44.2 > 42.3 > 40.6 > 38.7 > 36.6 > 34.2 > 31.9 > 29.8 > 28.0 > 26.5
~ CO > 856 > 796 > 726 > 561 > 531 > 502 > 476 > 452 > 429 > 408 > 387 > 368 > 351 > 337 > 328 > 321 > 316
< Liquefied Petroleum Gas (used especially in fork-lifters)
~ NH,,3,, > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14 > 0.14
~ NMVOC > 150 > 150 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148 > 148
~ NO,,x,, > 1,346 > 1,342 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325 > 1,325
~ SO,,x,, > 0.42 > 0.42 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41 > 0.41
~ PM2 > 0.85 > 0.85 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84 > 0.84
~ BC3 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13 > 0.13
~ CO > 114 > 114 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112 > 112

source: (Knörr et al. (2018b)) 6)

1
2
3
NOTE: With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly.footnote During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions. footnote

For lead (Pb) from leaded gasoline and corresponding TSP emissions, additional emissions are are calculated from 1990 to 1997 based upon contry-specific emission factors from 7).

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources] and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources ].

[!–

In contrast, without country-specific information, regarding all heavy metals and POPs, tier1 values are applied. Here, EF for exhaust HMs and PAHs have been derived from the July 2017 version of the EMEP/EEA air pollutant emission inventory guidebook 2016 (EMEP/EEA, 2016) 8) for road vehicles (chapter ??? , page ??? ff). Regarding heavy metals, separate tier1 default EFs are provided there in tables ??? and ??? for emissions from fuel combustion and engine wear as well as lubricant co-incineration. Heavy-metal emissions from lubricants (as far as not used in 2-stroke mix) are reported under NFR 2.G as emissions from product use. (Note: Until submission 2017, the EMEP/EEA default EFs provided for NRMM were used in the German inventory. As these EFs do not differentiate between fuel combustion and lubricant co-incineration, the inventory compiler decided to apply the more specific EFs from road transport to NRMM in 1.A.2.g vii, 1.A.4.a ii, b ii and c ii and 1.A.5.b, too.)

Table 5: Tier1 emission factors for heavy-metal and POP exhaust emissions from fuel combustion and engine wear

= = Pb = Cd = Hg = As = Cr = Cu = Ni = Se = Zn = B[a]P = B[b]F = B[k]F = I[…]P = PAH 1-4 = PCDD/F
= = [g/TJ] = [mg/TJ] = [µg/TJ]
~ Diesel oil > 0.012 > 0.001 > 0.123 > 0.002 > 0.198 > 0.133 > 0.005 > 0.002 > 0.419 > 698 > 1.164 > 801 > 184 > 2,847 > 1.62
~ Biodiesel 1 > 0.013 > 0.001 > 0.142 > 0.003 > 0.228 > 0.153 > 0.005 > 0.003 > 0.483 > 806 > 1.343 > 924 > 212 > 3,284 > 1.62
~ LPG = NE = NE = NE = NE = NE = NE = NE = NE = NE > 4.35 > 0.00 > 4.35 > 4.35 > 13.04 = NE
1

The tier1 value apllied for PCDD/F has been derived from a study carried out by (Rentz et al., 2008) 9) for the German Federal Environment Agency. For HCB and PCBs, no emission factors are available at the moment.

–]

NFR 1.A.4.a ii is no key source.

++ Unregulated pollutants (NH,,3,,, HMs, POPs, …)

gallery size="medium" : 1A4aii_EM_NH3.PNG : 1A4aii_EM_Cd.PNG gallery

For all unregulated pollutants, emission trends directly follow the trend in fuel consumption.

++ Regulated pollutants

+++ Nitrogen oxides (NO,,x,,), Sulphur dioxide (SO,,2,,)

For all regulated pollutants, emission trends follow not only the trend in fuel consumption but also reflect the impact of fuel-quality and exhaust-emission legislation.

gallery size="medium" : 1A4aii_EM_NOx.PNG : 1A4aii_EM_SOx.PNG gallery

+++ Particulate matter (BC, PM,,2.5,,, PM,,10,,, and TSP)

Over-all PM emissions are by far dominated by emissions from diesel oil combustion with the falling trend basically following the decline in fuel consumption between 2000 and 2005. Nonetheless, the decrease of the over-all emission trend was and still is amplified by the expanding use of particle filters especially to eliminate soot emissions.

Additional contributors such as the impact of TSP emissions from the use of leaded gasoline (until 1997) have no significant effect onto over-all emission estimates.

Here, as the EF(BC) are estimated via fractions provided in 10), black carbon emissions follow the corresponding emissions of PM,,2.5,,.

gallery size="medium" : 1A4aii_EM_PM.PNG gallery

Recalculations

Activity data hase been revised according to revised annual NEB line 67 shares and the finalized data from the National Energy Balance 2019.

Table 5: Revised annual contribution of 1.A.4.a ii to over-all diesel oil deliveries provided in NEB line 67

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018
Submission 2021 0,070 0,067 0,070 0,072 0,065 0,064 0,062 0,060 0,058 0,057 0,058 0,058 0,057
Submission 2020 0,069 0,066 0,066 0,071 0,070 0,070 0,069 0,068 0,068 0,068 0,068 0,068 0,068
absolute change 0,001 0,001 0,003 0,000 -0,005 -0,006 -0,007 -0,009 -0,010 -0,011 -0,010 -0,010 -0,011
relative change 0,94% 1,48% 5,23% 0,54% -7,09% -8,62% -10,2% -13,0% -14,2% -15,6% -14,1% -14,8% -15,9%

Table 6: Revised activity data, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018
Diesel Oil
Submission 2021 7.847 6.508 6.646 5.894 5.773 5.770 5.533 5.524 5.629 5.810 6.145 6.257 5.749
Submission 2020 7.774 6.413 6.316 5.851 6.213 6.314 6.158 6.348 6.562 6.885 7.153 7.343 6.816
absolute change 73,2 94,7 330 43,2 -440 -544 -625 -824 -933 -1.075 -1.008 -1.085 -1.067
relative change 0,94% 1,48% 5,23% 0,74% -7,08% -8,61% -10,1% -13,0% -14,2% -15,6% -14,1% -14,8% -15,7%
Biodiesel
Submission 2021 0.00 0.00 0.00 377 443 403 390 328 346 318 326 334 334
Submission 2020 0.00 0.00 0.00 128 403 414 402 368 398 372 376 389 372
absolute change 249 39,6 -11,3 -11,6 -40,0 -52,0 -54,4 -49,9 -55,4 -37,7
relative change 194% 9,83% -2,72% -2,88% -10,9% -13,1% -14,6% -13,3% -14,2% -10,1%
LPG
Submission 2021 2.787 3.450 4.261 4.533 4.629 4.557 4.484 4.409 4.333 4.256 4.336 4.301 4.264
Submission 2020 2.787 3.450 4.261 4.894 5.431 5.441 5.449 5.456 5.462 5.467 5.471 5.474 5.477
absolute change 0,000 0,000 0,006 -361 -802 -884 -966 -1.048 -1.130 -1.211 -1.135 -1.174 -1.214
relative change 0,00% 0,00% 0,00% -7,39% -14,8% -16,2% -17,7% -19,2% -20,7% -22,2% -20,7% -21,4% -22,2%
over-all fuel consumption
Submission 2021 10.634 9.958 10.907 10.803 10.844 10.729 10.407 10.261 10.307 10.383 10.807 10.892 10.347
Submission 2020 10.561 9.863 10.577 10.873 12.047 12.169 12.009 12.172 12.422 12.724 13.000 13.206 12.665
absolute change 73,2 94,7 330 -69,6 -1.203 -1.439 -1.602 -1.911 -2.115 -2.341 -2.193 -2.314 -2.319
relative change 0,69% 0,96% 3,12% -0,64% -9,98% -11,8% -13,3% -15,7% -17,0% -18,4% -16,9% -17,5% -18,3%

With all emission factors remaining unrevised, emission values have only been recalculated for 2017 as shown in the following table for the main pollutants.

Table 8: Recalculated emission estimates 2017, in kilotonnes

= = NH,,3,, = NMVOC = NO,,x,, = PM = BC = CO
~ Submission 2020 > 0.00203 > 1.195 > 10.3 > 0.286 > 0.217 > 3.099
~ Submission 2019 > 0.00202 > 1.193 > 10.3 > 0.284 > 0.216 > 3.084
~ absolute change > 0.00001 > 0.002 > 0.02 > 0.002 > 0.001 > 0.014
~ relative change > 0.37% > 0.19% > 0.17% > 0.58% > 0.58% > 0.47%

For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Uncertainties

Uncertainty estimates for activity data of mobile sources derive from research project FKZ 360 16 023: “Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland” by (Knörr et al. (2009)) 11).

Uncertainty estimates for emission factors were compiled during the PAREST research project. Here, the final report has not yet been published.

Planned improvements

Besides the annual routine revision of TREMOD MM, no specific improvements are planned.

FAQs

Why are similar EF applied for estimating exhaust heavy metal emissions from both fossil and biofuels?

The EF provided in 12) represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metal contained in biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel and bioethanol.


bibliography

: 1 : AGEB (2019): Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, (Aufruf: 29.11.2019), Köln & Berlin, 2019. : 2 : BAFA (2019): Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2017_dezember.html, Eschborn, 2019 : 3 : Knörr et al. (2019b): Knörr, W., Heidt, C., Gores, S., & Bergk, F. (2019b): ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2018, Heidelberg, 2019. : 4 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, Copenhagen, 2019. : 5 : Rentz et al. (2008): Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer : 6 : Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009. bibliography


1) (bibcite 1)
2) (bibcite 2)
3) (bibcite 3)
4) (bibcite 3)
5) (bibcite 3)
6) (bibcite 3)
7) (bibcite 3)
8) (bibcite 4)
9) (bibcite 5)
10) (bibcite 4)
11) (bibcite 6)
12) (bibcite 4)