meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:transport:civil_aviation:start [2021/04/08 08:25] kotzullasector:energy:fuel_combustion:transport:civil_aviation:start [2022/03/22 11:57] (current) – [Recalculations] kotzulla
Line 35: Line 35:
 Essential for emissions reporting is the separation of domestic and international air traffic. This happens using a so-called split factor representing the ratio of fuel consumption for national flights and the over-all consumption. Essential for emissions reporting is the separation of domestic and international air traffic. This happens using a so-called split factor representing the ratio of fuel consumption for national flights and the over-all consumption.
  
-For determination of this ratio, results from TREMOD AV (TRansport Emissions MODel AViation) have been used, based on the great circle distances flown by the different types of aircraft (Knörr et al. (2020c) [(KNOERR2020c)] & Gores (2020) [(GORES2020)]. Here, the ratio is calculated on the basis of statistics on numbers of national and international flights departing from German airports provided by the Federal Statistical Office (Statistisches Bundesamt).+For determination of this ratio, results from TREMOD AV (TRansport Emissions MODel AViation) have been used, based on the great circle distances flown by the different types of aircraft (Knörr et al. (2021c) [(KNOERR2021c)] & Gores (2021) [(GORES2021)]. Here, the ratio is calculated on the basis of statistics on numbers of national and international flights departing from German airports provided by the Federal Statistical Office (Statistisches Bundesamt).
  
 For further dividing kerosene consumption onto flight stages LTO and cruise, again results calculated within the TREMOD AV data base based on data provided by the Federal Statistical Office have been used. For further dividing kerosene consumption onto flight stages LTO and cruise, again results calculated within the TREMOD AV data base based on data provided by the Federal Statistical Office have been used.
Line 47: Line 47:
 ==== Activity Data ==== ==== Activity Data ====
  
-Emissions estimation is mainly based on consumption data for jet kerosene and aviation gasoline as provided in the national Energy Balances (AGEB, 2019) [3]. For very recent years with no AGEB data available (Normally the last year of the period reported.) data provided by the Federal Office of Economics and Export Control (BAFA) is being used.+Emissions estimation is mainly based on consumption data for jet kerosene and aviation gasoline as provided in the national Energy Balances (AGEB, 2021) [(AGEB2021)]. For very recent years with no AGEB data available (Normally the last year of the period reported.) data provided by the Federal Office of Economics and Export Control (BAFA) [(BAFA2021)] is being used.
  
 Table 1: Sources for 1.A.3.a activity data Table 1: Sources for 1.A.3.a activity data
Line 57: Line 57:
  
 __Table 2: Total inland fuel deliveries to civil aviation 1990-2019, in terajoules__ __Table 2: Total inland fuel deliveries to civil aviation 1990-2019, in terajoules__
-             ^  **1990**  ^  **1995**  ^  **2000**  ^  **2005**  ^  **2006**  ^  **2007**  ^  **2008**  ^  **2009**  ^  **2010**  ^  **2011**  ^  **2012**  ^  **2013**  ^  **2014**  ^  **2015**  ^  **2016**  ^  **2017**  ^  **2018**  ^  **2019**  ^ +           ^  1990    ^  1995    ^  2000    ^  2005    ^  2006    ^  2007    ^  2008    ^  2009    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019     2020    
-^  Kerosene       193.329 |    233.437 |    297.258 |    343.827 |    361.233 |    374.428 |    378.346 |    367.234 |    361.751 |    346.115 |    370.558 |    374.670 |    361.868 |    361.651 |    389.024 |    425.140 |    437.203 |    434.490 | +^  Kerosene   193,329 |  233,437 |  297,258 |  343,827 |  361,233 |  374,428 |  378,346 |  367,234 |  361,751 |  346,115 |  370,558 |  374,670 |  361,868 |  361,651 |  389,024 |  425,140 |  437,203 |  434,490 |  199,931 
-^ Avgas             2.438 |      1.142 |      1.120 |        698 |        653 |        611 |        638 |        594 |        568 |        614 |        558 |        496 |        472 |        553 |        407 |        403 |        389 |        319 | +^ Avgas      |    2,438 |    1,142 |    1,120 |      698 |      653 |      611 |      638 |      594 |      568 |      614 |      558 |      496 |      472 |      553 |      407 |      403 |      389 |      319 |      208 | 
-**1.A.3.a**  ^    195.767 ^    234.579 ^    298.378 ^    344.525 ^    361.886 ^    375.039 ^    378.984 ^    367.828 ^    362.319 ^    346.729 ^    371.116 ^    375.166 ^    362.340 ^    362.204 ^    389.431 ^    425.543 ^    437.592 ^    434.809 ^+1.A.3.a     195,767 |  234,579 |  298,378 |  344,525 |  361,886 |  375,039 |  378,984 |  367,828 |  362,319 |  346,729 |  371,116 |  375,166 |  362,340 |  362,204 |  389,431 |  425,543 |  437,592 |  434,809 |  200,139 |
  
-source: Working Group on Energy Balances (AGEB): National Energy Balances (AGEB, 2020) [(AGEB2020)]+source: Working Group on Energy Balances (AGEB): National Energy Balances (AGEB, 2021) [(AGEB2021)]
  
 For the present purposes, kerosene-consumption figures from NEB and BAFA statistics have to be broken down by national (= domestic) and international flights: For the present purposes, kerosene-consumption figures from NEB and BAFA statistics have to be broken down by national (= domestic) and international flights:
-Here, the split has been calculated on the basis of statistics on numbers of national and international flights departing from German airports provided by the Federal Statistical Office (Statistisches Bundesamt) within TREMOD AV [(KNOERR2020c)].+Here, the split has been calculated on the basis of statistics on numbers of national and international flights departing from German airports provided by the Federal Statistical Office (Statistisches Bundesamt) within TREMOD AV [(KNOERR2021c)].
  
 __Table 3: Ratios for calculating the shares of fuels used in 1.A.3.a ii - Domestic and 1.A.3.a i - International Civil Aviation, in %__ __Table 3: Ratios for calculating the shares of fuels used in 1.A.3.a ii - Domestic and 1.A.3.a i - International Civil Aviation, in %__
-|                                               ^  **1990**  ^  **1995**  ^  **2000**  ^  **2005**  ^  **2006**  ^  **2007**  ^  **2008**  ^  **2009**  ^  **2010**  ^  **2011**  ^  **2012**  ^  **2013**  ^  **2014**  ^  **2015**  ^  **2016**  ^  **2017**  ^  **2018**  ^  **2019**  ^ +|                                                1990  ^  1995  ^  2000  ^  2005  ^  2006  ^  2007  ^  2008  ^  2009  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^ 2019  ^ 2020  ^ 
-| **1.A.3.a ii - Civil domestic aviation**                                                                                                                                                                                                                              ||||||||||||||||||| +| **1.A.3.a ii - Civil domestic aviation**                                                                                                                                                            |||||||||||||||||||| 
-^ Kerosene                                      |       16,1 |       12,1 |       11,8 |       9,67 |       9,45 |       9,30 |       9,13 |       9,00 |       8,59 |       8,21 |       7,88 |       7,31 |       7,28 |       7,34 |       7,17 |       6,82 |       6,73 |       6,90 +^ Kerosene                                      |   16.1 |   12.1 |   11.8 |   9.67 |   9.45 |   9.30 |   9.13 |   9.00 |   8.59 |   8.21 |   7.88 |   7.31 |   7.28 |   7.34 |   7.17 |   6.82 |   6.73 |  6.94 |  6.99 
-^ Avgas                                               79,9 |       84,0       82,6       83,8 |       83,2       83,6 |       83,8 |       84,0       83,1       86,6       86,6 |       87,4 |       88,5 |       86,7 |       93,1 |       92,9       93,6 |       94,7 | +^ Avgas                                           79.0 |   80.9 |   79.7   78.0   76.8 |   76.7   77.6 |   78.1 |   77.3 |   82.2 |   81.8 |   81.9   83.3   81.5   90.6 |   90.4 |   91.1 |  92.1  93.7 | 
-| **1.A.3.a i - Civil international aviation**                                                                                                                                                                                                                          ||||||||||||||||||| +| **1.A.3.a i - Civil international aviation**                                                                                                                                                        |||||||||||||||||||| 
-^ Kerosene                                      |       83,9 |       87,9 |       88,2 |       90,3 |       90,5 |       90,7 |       90,9 |       91,0 |       91,4 |       91,8 |       92,1 |       92,7 |       92,7 |       92,7 |       92,8 |       93,2 |       93,3 |       93,1 | +^ Kerosene                                      |   83.9 |   87.9 |   88.2 |   90.3 |   90.5 |   90.7 |   90.9 |   91.0 |   91.4 |   91.8 |   92.1 |   92.7 |   92.7 |   92.7 |   92.8 |   93.2 |   93.3 |  93.|  93.0 
-^ Avgas                                               20,1 |       16,0 |       17,4 |       16,2 |       16,8       16,4 |       16,2       16,0       16,9       13,4       13,4       12,6       11,5 |       13,3       6,90       7,12       6,42 |       5,35 |+^ Avgas                                           21.0 |   19.1 |   20.3 |   22.0 |   23.2 |   23.3   22.4 |   21.9   22.7   17.8   18.2   18.1   16.7   18.5 |   9.44   9.61   8.88 |  7.88  6.28 |
  
 __Table 4: Resulting annual shares of jet kerosene and avgas used in 1.A.3.a ii - Domestic and 1.A.3.a i - International Civil Aviation, in terajoules__ __Table 4: Resulting annual shares of jet kerosene and avgas used in 1.A.3.a ii - Domestic and 1.A.3.a i - International Civil Aviation, in terajoules__
-|                                           ^  **1990**  ^  **1995**  ^  **2000**  ^  **2005**  ^  **2006**  ^  **2007**  ^  **2008**  ^  **2009**  ^  **2010**  ^  **2011**  ^  **2012**  ^  **2013**  ^  **2014**  ^  **2015**  ^  **2016**  ^  **2017**  ^  **2018**  ^  **2019**  ^ +|                                            1990    ^  1995    ^  2000    ^  2005    ^  2006    ^  2007    ^  2008    ^  2009    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019     2020    
-| 1.A.3.a ii - Civil domestic aviation                                                                                                                                                                                                                              ||||||||||||||||||| +| 1.A.3.a ii - Civil domestic aviation                                                                                                                                                            ||||||||||||||||                                     
-^ Kerosene                                  |     31.070 |     28.240 |     35.112 |     33.258 |     34.139 |     34.830 |     34.533 |     33.069 |     31.092 |     28.421 |     29.197 |     27.396 |     26.335 |     26.554 |     27.911 |     29.003 |     29.429 |     29.991 +^ Kerosene                                  |   31,070 |   28,240 |   35,112 |   33,258 |   34,139 |   34,830 |   34,533 |   33,069 |   31,092 |   28,421 |   29,197 |   27,396 |   26,335 |   26,554 |   27,911 |   29,003 |   29,429 |   30,148 |   13,980 
-^ Avgas                                          1.948        960        925        585        543        511        534        499        472        532        483        433        418        479        379        374 |        364 |        302 +^ Avgas                                        1,927      924      892      544      502      468      495      464      439      505      457      406      393      451      369      364 |      354 |      294 |      195 
-| 1.A.3.a i - Civil international aviation                                                                                                                                                                                                                          ||||||||||||||||||| +| 1.A.3.a i - Civil international aviation                                                                                                                                                        ||||||||||||||||                                     
-^ Kerosene                                  |    162.259 |    205.197 |    262.146 |    310.569 |    327.094 |    339.598 |    343.813 |    334.165 |    330.659 |    317.694 |    341.361 |    347.274 |    335.533 |    335.097 |    361.113 |    396.137 |    407.774 |    404.499 +^ Kerosene                                  |  162,259 |  205,197 |  262,146 |  310,569 |  327,094 |  339,598 |  343,813 |  334,165 |  330,659 |  317,694 |  341,361 |  347,274 |  335,533 |  335,097 |  361,113 |  396,137 |  407,774 |  404,342 |  185,951 
-^ Avgas                                            490        182        195        113        110        100        104         95         96         82         75         63         54         74         28         29         25 |         17 +^ Avgas                                          511      218      228      154      151      143      143      130      129      109      101     89.5     79.0    102.2     38.4     38.7     34.6 |     25.1     13.0 
-| 1.A.3.a - OVER-ALL                                                                                                                                                                                                                                                ||||||||||||||||||| +| 1.A.3.a - OVER-ALL                                                                                                                                                                              ||||||||||||||||                                     
-^ Kerosene                                  |    193.329 |    233.437 |    297.258 |    343.827 |    361.233 |    374.428 |    378.346 |    367.234 |    361.751 |    346.115 |    370.558 |    374.670 |    361.868 |    361.651 |    389.024 |    425.140 |    437.203 |    434.490 | +^ Kerosene                                  |  193,329 |  233,437 |  297,258 |  343,827 |  361,233 |  374,428 |  378,346 |  367,234 |  361,751 |  346,115 |  370,558 |  374,670 |  361,868 |  361,651 |  389,024 |  425,140 |  437,203 |  434,490 |  199,931 
-^ Avgas                                          2.438 |      1.142 |      1.120 |        698 |        653 |        611 |        638 |        594 |        568 |        614 |        558 |        496 |        472 |        553 |        407 |        403 |        389 |        319 |+^ Avgas                                        2,438 |    1,142 |    1,120 |      698 |      653 |      611 |      638 |      594 |      568 |      614 |      558 |      496 |      472 |      553 |      407 |      403 |      389 |      319 |      208 |
  
 The deviation of the kerosene consumed onto the two flight stages LTO and cruise again has been carried based on TREMOD AV estimations allowing the export of kerosene consumption during LTO for both domestic and international flights. The deviation of the kerosene consumed onto the two flight stages LTO and cruise again has been carried based on TREMOD AV estimations allowing the export of kerosene consumption during LTO for both domestic and international flights.
  
 __Table 5: Annual shares of LTO phase in domestic and international civil aviation, in %__ __Table 5: Annual shares of LTO phase in domestic and international civil aviation, in %__
-|             ^  **1990**  ^  **1995**  ^  **2000**  ^  **2005**  ^  **2006**  ^  **2007**  ^  **2008**  ^  **2009**  ^  **2010**  ^  **2011**  ^  **2012**  ^  **2013**  ^  **2014**  ^  **2015**   **2016**  ^  **2017**  ^  **2018**  ^  **2019**  ^ +|              1990  ^  1995  ^  2000  ^  2005  ^  2006  ^  2007  ^  2008  ^  2009  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^ 2016  ^  2017  ^  2018  ^  2019   2020  ^ 
-^ 1.A.3.a i    8,17      |  7,80      |  8,19      |  8,00      |  7,97      |  7,95      |  7,91      |  7,86      |  7,90      |  7,81      |  7,92      |  7,98      |  7,98       8,09      |  8,11       8,13       8,18       8,15      +^ 1.A.3.a i    8.17  |  7.80  |  8.19  |  8.00  |  7.97  |  7.95  |  7.91  |  7.86  |  7.90  |  7.81  |  7.92  |  7.98  |  7.98  |   8.09 |  8.11 |   8.13 |   8.18 |   8.24 |   7.88 
-^ 1.A.3.a ii  |  30,     |  29,     |  27,     |  27,     |  27,     |  27,     |  27,     |  27,     |  27,     |  27,     |  28,     |  27,     |  27,      27,     |  28,      28,      28,      28,     +^ 1.A.3.a ii  |  30. |  29. |  27. |  27. |  27. |  27. |  27. |  27. |  27. |  27. |  28. |  27. |  27.7  |   27.7 |  28.1 |   28.3 |   28.4 |   28.|   27.7 
-source: number of domestic and international flights as provided by the Federal Statistical Office (Destatis, 2020) [(DESTATIS2020)], compiled and computed within [(KNOERR2020c)] and [(GORES2020)]+source: number of domestic and international flights as provided by the Federal Statistical Office (Destatis, 2021) [(DESTATIS2021)], compiled and computed within [(KNOERR2021c)] and [(GORES2021)]
 a assumption: all aircraft using aviation gasoline are operated within the LTO-range below 3,000 feet and only for domestic flights a assumption: all aircraft using aviation gasoline are operated within the LTO-range below 3,000 feet and only for domestic flights
  
Line 105: Line 105:
  
 Emissions have been calculated for each flight phase, based on the respective emission factors. Therefore, the EF used have been taken from a wide range of different sources. Emissions have been calculated for each flight phase, based on the respective emission factors. Therefore, the EF used have been taken from a wide range of different sources.
-In contrast to earlier submissions, the emissions of  NO,,x,,, CO und HC are based on aircraft-specific EF deposited within TREMOD AV. With this very detailed estimations average EF are being formed which are than used for emissions reporting.+In contrast to earlier submissions, the emissions of  NO<sub>x</sub>, CO und HC are based on aircraft-specific EF deposited within TREMOD AV. With this very detailed estimations average EF are being formed which are than used for emissions reporting.
  
 The EF provided with the current submission represent annual average EF for the entire fleet, calculated as implied EF from the emissions computed within TREMOD AV and therefore differ from the values used in the past.  The EF provided with the current submission represent annual average EF for the entire fleet, calculated as implied EF from the emissions computed within TREMOD AV and therefore differ from the values used in the past. 
  
-**Sulphur dioxide (SO,,2,,)** emissions depend directly on the kerosene's sulphur content which varies regionally as well as seasonally. The EF used by Eurocontrol of 0.84 kg SO,,2,,/t kerosene lies between the values used for German inventory for 1990 to 1994 (1.08 to 1.03 kg SO,,2,,/t) and from 1995 (0.4 kg SO,,2,,/t).  In IPCC 2006b [((bibcite 7))] with 1kg SO,,2,,/t kerosene value comes very close to the old inventory values provided, based on a sulfur content of 0.05 % of weight. Following current information of the expert committee for the standardization of mineral oil and fuels (Fachausschuss für Mineralöl-und Brennstoffnormung, FAM), the common value for sulphur content of kerosene in Germany is about 0.01% of weight, i.e. one fifth of the IPCC data. In IIR 2009, a sulfur content of 0.021 weight% have been used, based on measurements from 1998 (Döpelheuer (2002)) [(DOEPELHEUER2002)]. +**Sulphur dioxide (SO<sub>2</sub>)** emissions depend directly on the kerosene's sulphur content which varies regionally as well as seasonally. The EF used by Eurocontrol of 0.84 kg SO<sub>2</sub>/t kerosene lies between the values used for German inventory for 1990 to 1994 (1.08 to 1.03 kg SO<sub>2</sub>/t) and from 1995 (0.4 kg SO<sub>2</sub>/t). 
 +In IPCC 2006b [(IPCC2006)] with 1 kg SO<sub>2</sub>/t kerosene value comes very close to the old inventory values provided, based on a sulfur content of 0.05 % of weight. Following current information of the expert committee for the standardization of mineral oil and fuels (Fachausschuss für Mineralöl-und Brennstoffnormung, FAM), the common value for sulphur content of kerosene in Germany is about 0.01% of weight, i.e. one fifth of the IPCC data. In IIR 2009, a sulfur content of 0.021 weight% have been used, based on measurements from 1998 (Döpelheuer (2002)) [(DOEPELHEUER2002)]. 
  
-As an EF decreasing due to improved production procedures and stricter critical levels seems plausible, for this report a constant decline between the annual values of 1.08 g SO,,2,,/kg for 1990, 0.4 g for 1998 and 0.2 g for 2009 has been assumed. Thereby, an exhaustive conversion of the sulfur into suflur dioxide is expected. - Due to the EF depending directly on the S content of the kerosene, one annual EF is used for both flight stages.+As an EF decreasing due to improved production procedures and stricter critical levels seems plausible, for this report a constant decline between the annual values of 1.08 g SO<sub>2</sub>/kg for 1990, 0.4 g for 1998 and 0.2 g for 2009 has been assumed. Thereby, an exhaustive conversion of the sulfur into suflur dioxide is expected. - Due to the EF depending directly on the S content of the kerosene, one annual EF is used for both flight stages.
  
-**Nitrogen oxide (NO,,x,,)**, **carbon monoxide (CO)** and **hydrocarbons (HC)** emissions were estimated using IEF calculated within TREMOD AV, based upon more specific (depending on type of aircraft, flight stage) EF mostly taken from the EMEP-EEA data base. For 2009, 40 % of over-all starts (about 70 % of total kilometres flown) had to be linked with adapted EF as it was not possible to directly or even indirectly (via similar types of aircraft) allocate the aircraft used here. Therefore, regression analysis had to be carried out, estimating EF via emission functions that calculate an EF for the respective type of engine depending on the particular take-off weight. +**Nitrogen oxide (NO<sub>x</sub>)**, **carbon monoxide (CO)** and **hydrocarbons (HC)** emissions were estimated using IEF calculated within TREMOD AV, based upon more specific (depending on type of aircraft, flight stage) EF mostly taken from the EMEP-EEA data base. For 2009, 40 % of over-all starts (about 70 % of total kilometres flown) had to be linked with adapted EF as it was not possible to directly or even indirectly (via similar types of aircraft) allocate the aircraft used here. Therefore, regression analysis had to be carried out, estimating EF via emission functions that calculate an EF for the respective type of engine depending on the particular take-off weight. 
  
-As a basis for these functions the EF of types of aircraft with given EF have been used (see: Knörr et al. (2018c)) [((bibcite 1))]. From the trend of the emissions calculated within TREMOD AV, annual average EF for the entire fleet have been formed, which have then been used for reporting. Hence, the EF differ widely from those used in earlier submissions. +As a basis for these functions the EF of types of aircraft with given EF have been used (see: Knörr et al. (2020c)) [(KNOERR2020c)]. From the trend of the emissions calculated within TREMOD AV, annual average EF for the entire fleet have been formed, which have then been used for reporting. Hence, the EF differ widely from those used in earlier submissions. 
  
-**Ammonia (NH,,3,,)** emissions were estimated using an EF of 0.173 g/kg kerosene for both flight stages (UBA, 2009).+**Ammonia (NH<sub>3</sub>)** emissions were estimated using an EF of 0.173 g/kg kerosene for both flight stages (UBA, 2009) [(UBA2009)].
  
-The EFs for **non-methane volatile organic compounds (NMVOC)** were calculated as the difference between the EF for over-all hydrocarbons (HC) and the EF for methane (CH,,4,,).+The EFs for **non-methane volatile organic compounds (NMVOC)** were calculated as the difference between the EF for over-all hydrocarbons (HC) and the EF for methane (CH<sub>4</sub>).
  
 **Particulate Matter** **Particulate Matter**
-Within the IPCC EF data base, there are no default data provided for emissions of particulate matter (TSP, PM,,10,,, and PM,,2.5,,). Therefore, the EF for dust (**T**otal **S**uspended **P**articulate Matter – **TSP**) are taken over from Corinair (2006), giving specific values for an average fleet and for the two flight stages in table 8.2: For national flights 0.7 kg TSP/LTO and 0.2 kg TSP/t kerosene and 0.15 kg TSP/LTO and 0.2 kg TSP/t kerosene for international flights. Following this table, a kerosene consumption per LTO cycle of 825 kg for national and 1,617 kg for international flights have been assumed and the EF for the LTO stage have been estimated.+Within the IPCC EF data base, there are no default data provided for emissions of particulate matter (TSP, PM<sub>10</sub>, and PM<sub>2.5</sub>). Therefore, the EF for dust (**T**otal **S**uspended **P**articulate Matter – **TSP**) are taken over from Corinair (2006) [(CORINAIR2006)], giving specific values for an average fleet and for the two flight stages in table 8.2: For national flights 0.7 kg TSP/LTO and 0.2 kg TSP/t kerosene and 0.15 kg TSP/LTO and 0.2 kg TSP/t kerosene for international flights. Following this table, a kerosene consumption per LTO cycle of 825 kg for national and 1,617 kg for international flights have been assumed and the EF for the LTO stage have been estimated.
  
-The EF for **water vapor (H,,2,,O)** provided by Eurocontrol (2004) is about 1,230g H,,2,,O / kg kerosene, whereas in Corinair (2006) [((bibcite 8))] 1,237g H,,2,,O/kg is assumed. Based on the stoichiometric assumptions mentioned above a EF(CO,,2,,) of 1.24 kg H,,2,,O/kg can be derived. To reduce the number of sources for EF, here, the Corinair value has been used for both flight stages and for both national and international flights.+The EF for **water vapor (H<sub>2</sub>O)** provided by Eurocontrol (2004) is about 1,230g H<sub>2</sub>O / kg kerosene, whereas in Corinair (2006) [(CORINAIR2006)] 1,237g H<sub>2</sub>O /kg is assumed. Based on the stoichiometric assumptions mentioned above a EF(CO<sub>2</sub>) of 1.24 kg H<sub>2</sub>O/kg can be derived. To reduce the number of sources for EF, here, the Corinair value has been used for both flight stages and for both national and international flights.
  
-As for **polycyclic aromatic hydrocarbons** (PAH), tier1 EF from (EMEP/EEA, 2013) have been apllied here. As the EMEP guidebook does not provide original EF for jet kerosene, values provided for gasoline in road transport have been used here as a proxy and will be replaced by more appropriate data as soon as this is available.+As for **polycyclic aromatic hydrocarbons** (PAH), tier1 EF from (EMEP/EEA, 2019[(EMEPEEA2019)] have been apllied here. As the EMEP guidebook does not provide original EF for jet kerosene, values provided for gasoline in road transport have been used here as a proxy and will be replaced by more appropriate data as soon as this is available.
  
 The conversion of EF representing emissions per kilo fuel combusted [kg pollutant/kg kerosene] into energy related EF [kg pollutant/TJ energy] has been carried out using a net calorific value of 43,000 kJ/kg. The conversion of EF representing emissions per kilo fuel combusted [kg pollutant/kg kerosene] into energy related EF [kg pollutant/TJ energy] has been carried out using a net calorific value of 43,000 kJ/kg.
  
-== Aviation gasoline==+=== Aviation gasoline ===
  
-For aviation gasoline (avgas) a deviation onto LTO and cruise is assumed to be unnecessary. Therefore, there are no such specific EF used here. As for kerosene, the EF for **NO,,x,,**, **CO** and **HC** have been taken from the calculations carried out within TREMOD AV. Here, for calculating aircraft specific NO,,x,,, CO, and HC emissions corresponding EF from the EMEP-EEA data base have been used that have than been divided by the annual avgas consumption to form annual average EF for emission reporting.+For aviation gasoline (avgas) a deviation onto LTO and cruise is assumed to be unnecessary. Therefore, there are no such specific EF used here. As for kerosene, the EF for **NO<sub>x</sub>**, **CO** and **HC** have been taken from the calculations carried out within TREMOD AV. Here, for calculating aircraft specific NO<sub>x</sub>, CO, and HC emissions corresponding EF from the EMEP-EEA data base have been used that have than been divided by the annual avgas consumption to form annual average EF for emission reporting.
  
-With respect to fuel characteristics, there are no big differences between avgas and gasoline used in passenger cars (PC). Therefore, specific **sulphur dioxide (SO,,2,,)** emissions from PC gasoline can be carried forward to avgas. - Following the expert committee for the standardization of mineral oil and fuels (FAM), the critical value of sulfur content for gasoline sold at gas stations is 10 mg/kg, i.e. 0,001 % of weight - or one tenth of the kerosene value. Therefore, the EF(SO,,2,,used for avgas equals the EF used for kerosene reduced by 90 %.+With respect to fuel characteristics, there are no big differences between avgas and gasoline used in passenger cars (PC). Therefore, specific **sulphur dioxide (SO<sub>2</sub>)** emissions from PC gasoline can be carried forward to avgas. - Following the expert committee for the standardization of mineral oil and fuels (FAM), the critical value of sulfur content for gasoline sold at gas stations is 10 mg/kg, i.e. 0,001 % of weight - or one tenth of the kerosene value. Therefore, the EF used for avgas equals the EF used for kerosene reduced by 90 %.
  
 There are different sorts of avgas sold with different **lead (Pb)** contents. As an exact annual ration of the sorts sold is not available, the most common type of avgas (AvGas 100 LL (Low Lead)) with a lead content of 0.56 g/l is set as an approximation. This value lies slightly below the value of 0.6 g/l as proposed in the EMEP Guidebook 2009. – For estimating lead emissions here the value provided for AvGas 100 LL has been converted into an EF of about 0.75 g lead/kg avgas using a density of 0.75 kg/l. There are different sorts of avgas sold with different **lead (Pb)** contents. As an exact annual ration of the sorts sold is not available, the most common type of avgas (AvGas 100 LL (Low Lead)) with a lead content of 0.56 g/l is set as an approximation. This value lies slightly below the value of 0.6 g/l as proposed in the EMEP Guidebook 2009. – For estimating lead emissions here the value provided for AvGas 100 LL has been converted into an EF of about 0.75 g lead/kg avgas using a density of 0.75 kg/l.
Line 143: Line 144:
  
 All other EF are not available specifically for small aircraft and therefore have been equalized with the EF used for kerosene, national, cruise. All other EF are not available specifically for small aircraft and therefore have been equalized with the EF used for kerosene, national, cruise.
- 
-__Table 6: EF,,2018,, used for emission estimation from avgas use in aircraft, in g/kg__ 
-||~ Pollutant ||~ EF ||~ Source or estimation info || 
-|| NO,,x,, ||> 11.76 || estimated within TREMOD AV || 
-|| NMVOC ||> 7.98  || estimated within TREMOD AV from EF(HC) minus EF(CH,,4,,) || 
-|| SO,,2,, ||> 0.02 || equals 1/10 of the EF used for kerosene, cruise/domestic/2008 || 
-|| CO ||> 661 || estimated within TREMOD AV || 
-|| TSP ||> 1.18 || estimated from lead content AvGas 100 LL || 
-|| Pb ||> 0.75 || estimated from lead content of AvGas 100 L || 
  
 The conversion of the EF from [kg emission/kg avgas consumed] into [kg emission/TJ energy converted] has been carried out using a net calorific value of 44,300 kJ/kg. The conversion of the EF from [kg emission/kg avgas consumed] into [kg emission/TJ energy converted] has been carried out using a net calorific value of 44,300 kJ/kg.
Line 157: Line 149:
 > **NOTE:** For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.   > **NOTE:** For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.  
  
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to [[[ appendix2.3-HM-from-mobile-sources | Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources]]] and [[[ appendix2.4-POPs-from-mobile-sources | Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources ]]].+> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.
  
 =====Recalculations===== =====Recalculations=====
  
-With the total kerosene inland deliveries remainig unchanged within the National Energy Balances, the domestic share of total kerosene consumption was revised based on revised fuel-consumption estimates for the LTO-cycle as derived from the EMEP/EEA air pollutant emission inventory guidebook 2016 [(EMEPEEA2019)].+With the total kerosene inland deliveries remainig unchanged within the National Energy Balances, the domestic share of total kerosene consumption was revised based on revised fuel-consumption estimates for the LTO-cycle as derived from the EMEP/EEA air pollutant emission inventory guidebook 2019 [(EMEPEEA2019)].
  
 __Table 7: Revised percental shares of kerosene used for domestic flights, in %__ __Table 7: Revised percental shares of kerosene used for domestic flights, in %__
-|                   ^  **1990**  ^  **1995**  ^  **2000**  ^  **2005**  ^  **2006**  ^  **2007**  ^  **2008**  ^  **2009**  ^  **2010**  ^  **2011**  ^  **2012**  ^  **2013**  ^  **2014**  ^  **2015**  ^  **2016**  ^  **2017**  ^  **2018**  ^ +|                    1990   ^  1995   ^  2000   ^  2005   ^  2006   ^  2007   ^  2008   ^  2009   ^  2010   ^  2011   ^  2012   ^  2013   ^  2014   ^  2015   ^  2016   ^  2017   ^  2018   ^  2019   
-| **JET KEROSENE**                                                                                                                                                                                                              |||||||||||||||||| +| **JET KEROSENE**                                                                                                                                                                    ||||||||||||||||||| 
-^ Submission 2021   |       16,1 |       12,1 |       11,8 |       9,67 |       9,45 |       9,30 |       9,13 |       9,00 |       8,59 |       8,21 |       7,88 |       7,31 |       7,28 |       7,34 |       7,17 |       6,82 |       6,73 | +^ Submission 2022   |    16.1 |    12.1 |    11.8 |    9.67 |    9.45 |    9.30 |    9.13 |    9.00 |    8.59 |    8.21 |    7.88 |    7.31 |    7.28 |    7.34 |    7.17 |    6.82 |    6.73 |    6.94 
-^ Submission 2020   |       14,9       12,7       10,7 |       8,68       8,46       8,42       8,42       8,16       8,26       8,72       7,76       6,94       7,49       7,56       7,07 |       6,27       6,14 +^ Submission 2021   |    16.1    12.1    11.8 |    9.67    9.45    9.30    9.13 |    9.00    8.59    8.21    7.88    7.31    7.28    7.34    7.17    6.82    6.73 |    6.90 
-^ absolute change         1,17      -0,59       1,07       0,99       0,99       0,88       0,70       0,84       0,34      -0,50       0,12       0,37      -0,21      -0,22       0,10       0,56       0,59 +^ absolute change      0.00    0.00 |    0.00    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.00 |    0.04 
-^ relative change        7,88% |     -4,62% |      9,97% |      11,5% |      11,7% |      10,4% |      8,34% |      10,3% |      4,12% |     -5,78% |      1,53% |      5,39% |     -2,85% |     -2,87% |      1,48% |      8,86% |      9,67% | +^ relative change     0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.00% |   0.52% | 
-| **AVGAS**                                                                                                                                                                                                                     |||||||||||||||||| +| **AVGAS**                                                                                                                                                                           ||||||||||||||||||| 
-^ Submission 2021         79,9 |       84,0 |       82,6 |       83,8 |       83,2 |       83,6 |       83,8 |       84,0 |       83,1 |       86,6 |       86,6 |       87,4 |       88,5 |       86,7 |       93,1 |       92,9 |       93,6 | +^ Submission 2022      79.0 |    80.9 |    79.7 |    78.0 |    76.8 |    76.7 |    77.6 |    78.1 |    77.3 |    82.2 |    81.8 |    81.9 |    83.3 |    81.5 |    90.6 |    90.4 |    91.1 |    92.1 
-^ Submission 2020          100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 |        100 +^ Submission 2021      79.9 |    84.0 |    82.6 |    83.8 |    83.2 |    83.6 |    83.8 |    84.0 |    83.1 |    86.6 |    86.6 |    87.4 |    88.5 |    86.7 |    93.1 |    92.9 |    93.6 |    94.7 
-^ absolute change        -20,1 |      -16,0 |      -17,4      -16,2 |      -16,8      -16,4      -16,2      -16,0      -16,9      -13,4 |      -13,4 |      -12,6      -11,5 |      -13,3       -6,9       -7,1       -6,4 +^ absolute change     -0.87   -3.14   -2.94   -5.81   -6.40   -6.98   -6.13   -5.92   -5.80 |   -4.39   -4.77   -5.44   -5.26   -5.14   -2.54   -2.49   -2.47 |   -2.53 
-^ relative change       -20,1% |     -16,0% |     -17,4% |     -16,2% |     -16,8% |     -16,4% |     -16,2% |     -16,0% |     -16,9% |     -13,4% |     -13,4% |     -12,6% |     -11,5% |     -13,3% |     -6,90% |     -7,12% |     -6,42% |+^ relative change    -1.09% |  -3.74% |  -3.56% |  -6.94% |  -7.70% |  -8.34% |  -7.32% |  -7.04% |  -6.97% |  -5.07% |  -5.51% |  -6.22% |  -5.95% |  -5.93% |  -2.73% |  -2.68% |  -2.64% |  -2.67% |
  
 As a result, the amounts of fuel allocated to sub-categories of //1.A.3.a i - Civil international aviation// and //1.A.3.a ii - Civil domestic aviation// had to be revised accordingly.  As a result, the amounts of fuel allocated to sub-categories of //1.A.3.a i - Civil international aviation// and //1.A.3.a ii - Civil domestic aviation// had to be revised accordingly. 
  
 __Table 8: Revised amounts of fuel allocated to international (1.A.3.a i) and domestic (1.A.3.a ii) flights, in terajoules__ __Table 8: Revised amounts of fuel allocated to international (1.A.3.a i) and domestic (1.A.3.a ii) flights, in terajoules__
-                                                                ^  **1990**  ^  **1995**  ^  **2000**  ^  **2005**  ^  **2006**  ^  **2007**  ^  **2008**  ^  **2009**  ^  **2010**  ^  **2011**  ^  **2012**  ^  **2013**  ^  **2014**  ^  **2015**  ^  **2016**  ^  **2017**  ^  **2018**  ^ +                                          ^  1990    ^  1995    ^  2000    ^  2005    ^  2006    ^  2007    ^  2008    ^  2009    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018     2019    
- amounts allocated to 1.A.3.a i - Civil international aviation                                                                                                                                                                                                              |||||||||||||||||| +^ 1.A.3.a i - Civil international aviation                                                                                                                                                                                      ||||||||||||||||||| 
-| **JET KEROSENE**                                                                                                                                                                                                                                                            |||||||||||||||||| +| **JET KEROSENE**                                                                                                                                                                                                              ||||||||||||||||||| 
-^ Submission 2021                                                    162.259 |    205.197 |    262.146 |    310.569 |    327.094 |    339.598 |    343.813 |    334.165 |    330.659 |    317.694 |    341.361 |    347.274 |    335.533 |    335.097 |    361.113 |    396.137 |    407.774 | +^ Submission 2022                            162,259 |  205,197 |  262,146 |  310,569 |  327,094 |  339,598 |  343,813 |  334,165 |  330,659 |  317,694 |  341,361 |  347,274 |  335,533 |  335,097 |  361,113 |  396,137 |  407,774 |  404,342 
-^ Submission 2020                                                    164.528    203.828    265.329    313.986    330.657    342.893    346.472    337.252    331.888    315.949    341.802    348.674    334.761    334.312    361.520    398.498    410.370 +^ Submission 2021                            162,259  205,197  262,146  310,569  327,094  339,598  343,813  334,165  330,659  317,694  341,361  347,274  335,533  335,097  361,113  396,137  407,774 |  404,499 
-^ absolute change                                                 |     -2.269      1.369 |     -3.183 |     -3.417 |     -3.562 |     -3.295 |     -2.660 |     -3.087 |     -1.229      1.745       -441 |     -1.400        771        785       -407 |     -2.361 |     -2.596 +^ absolute change                           |     0.00     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00     0.00     0.00 |     0.00     0.00     0.00     0.00 |     0.00 |     0.00 |     -157 
-^ relative change                                                     -1,38% |      0,67% |     -1,20% |     -1,09% |     -1,08% |     -0,96% |     -0,77% |     -0,92% |     -0,37% |      0,55% |     -0,13% |     -0,40% |      0,23% |      0,23% |     -0,11% |     -0,59% |     -0,63% | +^ relative change                              0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |    0.00% |   -0.04% | 
-| **AVGAS**                                                                                                                                                                                                                                                                   |||||||||||||||||| +| **AVGAS**                                                                                                                                                                                                           ||||||||||||||||||          | 
-^ Submission 2021                                                        490 |        182 |        195 |        113 |        110 |        100 |        104 |         95 |         96         82 |         75         63         54 |         74         28 |         29         25 | +^ Submission 2022                                511 |      218 |      228 |      154 |      151 |      143 |      143 |      130 |      129 |      109 |      101 |     89.5 |     79.0 |    102.2 |     38.4 |     38.7 |     34.6 |     25.1 
-Submission 2020                                                                           10         15         16         17         18         19         20         21         22         23         24 |         25         26         27         28 +^ Submission 2021                                490 |      182 |      195 |      113 |      110 |      100 |      104 |     95.0     95.8     82.4     74.7     62.5     54.2     73.8     28.1     28.7     25.0 |     17.1 
-absolute change                                                        490        177        185         98         94         83         86         76         76         61         53         40         30         49                           -3 | +absolute change                               21.3     35.9     32.9     40.6     41.8     42.6     39.1     35.2     32.9     26.9     26.6     27.0     24.8     28.4     10.4     10.0     9.60 |     8.07 
- amounts allocated to 1.A.3.a ii - Civil domestic aviation                                                                                                                                                                                                                  |||||||||||||||||| +relative change                              4.34%    19.7%    16.9%    35.8%    38.1%    42.7%    37.7%    37.0%    34.4%    32.7%    35.6%    43.1%    45.8%    38.5%    36.9%    35.0%    38.5% |    47.3
-**JET KEROSENE**                                                                                                                                                                                                                                                            |||||||||||||||||| +^ 1.A.3.a ii - Civil domestic aviation                                                                                                                                                                                          ^^^^^^^^^^^^^^^^^|| 
-^ Submission 2021                                                     31.070 |     28.240 |     35.112 |     33.258 |     34.139 |     34.830 |     34.533 |     33.069 |     31.092 |     28.421 |     29.197 |     27.396 |     26.335 |     26.554 |     27.911 |     29.003 |     29.429 | +^ **JET KEROSENE**                                                                                                                                                                                                              ||||||||||||||||||| 
-Submission 2020                                                 |     28.801 |     29.609 |     31.929 |     29.841 |     30.576 |     31.535 |     31.874 |     29.982 |     29.863 |     30.166 |     28.756 |     25.996 |     27.107 |     27.339 |     27.504 |     26.642 |     26.833 +^ Submission 2022                             31,070   28,240   35,112   33,258   34,139   34,830   34,533   33,069   31,092   28,421   29,197   27,396   26,335   26,554   27,911   29,003   29,429  30,148  
-absolute change                                                      2.269     -1.369      3.183      3.417      3.562      3.295      2.660      3.087      1.229     -1.745        441      1.400       -771       -785        407      2.361      2.596 +^ Submission 2021                             31,070 |   28,240 |   35,112 |   33,258 |   34,139 |   34,830 |   34,533 |   33,069 |   31,092 |   28,421 |   29,197 |   27,396 |   26,335 |   26,554 |   27,911 |   29,003 |   29,429 |  29,991  
-relative change                                                      7,88%     -4,62%      9,97%      11,5%      11,7%      10,4%      8,34%      10,3%      4,12%     -5,78%      1,53%      5,39%     -2,85%     -2,87%      1,48%      8,86%      9,67% +absolute change                           |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |     0.00 |      157 
-**AVGAS**                                                                                                                                                                                                                                                                   |||||||||||||||||| +relative change                              0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%    0.00% |    0.52% 
-^ Submission 2021                                                      1.948 |        960 |        925 |        585 |        543 |        511 |        534 |        499 |        472 |        532 |        483 |        433 |        418 |        479 |        379 |        374 |        364 +**AVGAS**                                                                                                                                                                                                                     ||||||||||||||||||| 
-^ Submission 2020                                                 |      2.438 |      1.142 |      1.120 |        698 |        653 |        611 |        638 |        594 |        568 |        614 |        558 |        496 |        472 |        553 |        407 |        403 |        389 +^ Submission 2022                              1,927      924      892      544      502      468      495      464      439      505      457      406      393      451      369      364      354      294 
-^ absolute change                                                       -490       -182       -195       -113       -110       -100       -104      -95,0      -95,8      -82,4      -74,7      -62,5      -54,2 |      -73,8 |      -28,1      -28,7      -25,0 | +^ Submission 2021                              1,948 |      960 |      925 |      585 |      543 |      511 |      534 |      499 |      472 |      532 |      483 |      433 |      418 |      479 |      379 |      374 |      364 |      302 
-^ relative change                                                     -20,1% |     -16,0% |     -17,4% |     -16,2% |     -16,8% |     -16,4% |     -16,2% |     -16,0% |     -16,9% |     -13,4% |     -13,4% |     -12,6% |     -11,5% |     -13,3% |     -6,90% |     -7,12% |     -6,42% |+^ absolute change                              -21.3    -35.9    -32.9    -40.6    -41.8    -42.6    -39.1    -35.2    -32.9    -26.9    -26.6    -27.0    -24.8 |    -28.4    -10.4    -10.|    -9.60 |    -8.07 
 +^ relative change                             -1.09% |   -3.74% |   -3.56% |   -6.94% |   -7.70% |   -8.34% |   -7.32% |   -7.04% |   -6.97% |   -5.07% |   -5.51% |   -6.22% |   -5.95% |   -5.93% |   -2.73% |   -2.68% |   -2.64% |   -2.67% |
  
-<WRAP center round info 60%> +<WRAP center round info 65%> 
-Polltutant-specific recalculations result from changes in the emission factors applied which are discussed further in the reffering sub-chapters.+For **pollutant-specific information on recalculated emission estimates for Base Year and 2019**, please see the recalculation tables following [[general:recalculations:start|chapter 8.1 Recalculations]].
 </WRAP> </WRAP>
  
Line 214: Line 207:
 Information on uncertainties is provided here with most data representing expert judgement from the research project mentioned above. Information on uncertainties is provided here with most data representing expert judgement from the research project mentioned above.
  
-For estimating uncertainties, the partial uncertainties (U,,1,, to U,,n,,) of the components incorporated in emission calculations have to be quantified. +For estimating uncertainties, the partial uncertainties (U<sub>1</sub> to U<sub>n</sub>) of the components incorporated in emission calculations have to be quantified. 
-By additive linking of the squared partial uncertainties the overall uncertainty (U,,total,,) can then be estimated (IPCC, 2000) [(IPCC2000)].+By additive linking of the squared partial uncertainties the overall uncertainty (U<sub>total</sub>) can then be estimated (IPCC, 2000) [(IPCC2000)].
  
 The uncertainties given here have been evaluated for all time series and flight stages as average values. The uncertainties given here have been evaluated for all time series and flight stages as average values.
Line 225: Line 218:
 For the years 1990 to 2002 data is based upon estimations carried out within TREMOD AV which themselves are based on data from the Federal Statistical Office and EF from the EMEP-EEA data base. For 2003 to 2011 data from Eurocontrol are being used, that are calculated within ANCAT. Comparing results from the ANCAT model with actual consumption data show aberrations of ±12 %. Here, data calculated with AEM 3 model would have an uncertainty of only 3 to 5 % (EUROCONTROL 2006) [(EUROCONTROL2006)]. For the years 1990 to 2002 data is based upon estimations carried out within TREMOD AV which themselves are based on data from the Federal Statistical Office and EF from the EMEP-EEA data base. For 2003 to 2011 data from Eurocontrol are being used, that are calculated within ANCAT. Comparing results from the ANCAT model with actual consumption data show aberrations of ±12 %. Here, data calculated with AEM 3 model would have an uncertainty of only 3 to 5 % (EUROCONTROL 2006) [(EUROCONTROL2006)].
  
-The image below shows the partial uncertainties and correlations used for uncertainty estimations carried out during the research project. Mouseclick to enlarge! +As no uncertainty estimates were carried out for ammonia and particulate matter within the above-mentioned project, values from the PAREST research project mentioned for most over mobile sources were used. Here, the final report has not yet been published.
-[[gallery size="medium"]] +
-: Uncertainties.png +
-[[/gallery]] +
- +
-As no uncertainty estimates were carried out for NH,,3,, and particulate matter within the above-mentioned project, values from the PAREST research project mentioned for most over mobile sources were used. Here, the final report has not yet been published.+
  
  
 ===== FAQs ===== ===== FAQs =====
  
-**//Whereby does the party justify the adding-up of the two amounts given in BAFA table 7j as deliveries 'An die Luftfahrt' and 'An Sonstige' ?//**+**Whereby does the party justify the adding-up of the two amounts given in BAFA table 7j as deliveries 'An die Luftfahrt' and 'An Sonstige' ?**
  
 For mineral oils, German National Energy Balances (NEBs) - amongst other sources - are based on BAFA data on the amounts delivered to different sectors. A comparison with consumption data from AGEB and BAFA shows that data from NEB line 76 /63: 'Luftverkehr' equates to the amount added from both columns in BAFA table 7j. For mineral oils, German National Energy Balances (NEBs) - amongst other sources - are based on BAFA data on the amounts delivered to different sectors. A comparison with consumption data from AGEB and BAFA shows that data from NEB line 76 /63: 'Luftverkehr' equates to the amount added from both columns in BAFA table 7j.
  
-**//Why is there no aviation gasoline reported under 1.A.3.a i - International Civil Aviation?//**+**On which basis does the party estimate the reported lead emissions from aviation gasoline?**
  
-Due to the lack of further information, the party assumes that aviation gasoline is only being used for domestic civil aviation. - Furthermore, the party also assumes that the use of aviation gasoline in domestic civil aviation takes place below 3,000 feet only - and therewith only within the LTO-range (1.A.3.a ii (i)).+assumption by partyaviation gasoline = AvGas 100 LL 
 +(AvGas 100 LL is the predominant sort of aviation gasoline in Western Europe)1 
 +lead content of AvGas 100 LL: 0.56 g lead/liter (as tetra ethyl lead)2
  
 +The applied procedure is similar to the one used for calculating lead emissions from leaded gasoline used in road transport. (There, in contrast to aviation gasoline, the lead content constantly declined resulting in a ban of leaded gasoline in 1997.)
 +
 +**On which basis does the party estimate the reported TSP emissions from aviation gasoline?**
 +
 +The TSP emissions calculated depend directly on the reported lead emissions: The emission factor for TSP is 1.6 times the emission factor used for lead: EF(TSP) = 1.6 x EF(Pb).
 +The applied procedure is similar to the one used for calculating TSP emissions from leaded gasoline used in road transport.
 +
 +[(AGEB2021>AGEB, 2021: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, (Aufruf: 23.11.2021), Köln & Berlin, 2021.)]
 +[(BAFA2021>BAFA, 2021: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland;
 +URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2018_dezember.html, Eschborn, 2020.)]
 [(KNOERR2010> Knörr, W., Schacht, A., & Gores, S. (2010): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.)] [(KNOERR2010> Knörr, W., Schacht, A., & Gores, S. (2010): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.)]
-[(KNOERR2020c> Knörr et al. (2020c): Knörr, W., Schacht, A., & Gores, S.: TREMOD Aviation (TREMOD AV) 2018 - Revision des Modells zur Berechnung des Flugverkehrs (TREMOD-AV). Heidelberg, Berlin: Ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH & Öko-Institut e.V., Berlin & Heidelberg, 2020.)] +[(KNOERR2021c> Knörr et al. (2021c): Knörr, W., Schacht, A., & Gores, S.: TREMOD Aviation (TREMOD AV) - Revision des Modells zur Berechnung des Flugverkehrs (TREMOD-AV). Heidelberg, Berlin: Ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH & Öko-Institut e.V., Berlin & Heidelberg, 2021.)] 
-[(GORES2020> Gores (2020): Inventartool zum deutschen Flugverkehrsinventar 1990-2018, im Rahmen der Aktualisierung des Moduls TREMOD-AV im Transportemissionsmodell TREMOD, Berlin, 2020.)]+[(GORES2021> Gores (2021): Inventartool zum deutschen Flugverkehrsinventar 1990-2020, im Rahmen der Aktualisierung des Moduls TREMOD-AV im Transportemissionsmodell TREMOD, Berlin, 2021.)]
 [(EMEPEEA2019> EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation/view; Copenhagen, 2019.)] [(EMEPEEA2019> EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation/view; Copenhagen, 2019.)]
 [(EUROCONTROL2020> Eurocontrol (2020): Advanced emission model (AEM); https://www.eurocontrol.int/model/advanced-emission-model; 2020.)] [(EUROCONTROL2020> Eurocontrol (2020): Advanced emission model (AEM); https://www.eurocontrol.int/model/advanced-emission-model; 2020.)]
Line 253: Line 253:
 URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2018_dezember.html, (Aufruf: 29.11.2020), Eschborn, 2020.)] URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2018_dezember.html, (Aufruf: 29.11.2020), Eschborn, 2020.)]
 [(DOEPELHEUER2002> Döpelheuer (2002): Anwendungsorientierte Verfahren zur Bestimmung von CO, HC und Ruß aus Luftfahrttriebwerken, Dissertationsschrift des DLR, Institut für Antriebstechnik, Köln, 2002.)] [(DOEPELHEUER2002> Döpelheuer (2002): Anwendungsorientierte Verfahren zur Bestimmung von CO, HC und Ruß aus Luftfahrttriebwerken, Dissertationsschrift des DLR, Institut für Antriebstechnik, Köln, 2002.)]
 +[(CORINAIR2006> CORINAIR, 2006 - EMEP/CORINAIR Emission Inventory Guidebook - 2006, EEA technical report No. 11/2006; Dezember 2006, Kopenhagen, 2006 URL: http://www.eea.europa.eu/publications/EMEPCORINAIR4 )]
 [(IPCC1996a> Revised 1996 IPCC Guidelines, Volume 3: Reference Manual, Chapter I: Energy; URL: http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ref2.pdf, p. I.40 )] [(IPCC1996a> Revised 1996 IPCC Guidelines, Volume 3: Reference Manual, Chapter I: Energy; URL: http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ref2.pdf, p. I.40 )]
 [(IPCC1996b> Revised 1996 IPCC Guidelines, Volume 3: Reference Manual, Chapter I: Energy; http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ref3.pdf, p. I.42 )] [(IPCC1996b> Revised 1996 IPCC Guidelines, Volume 3: Reference Manual, Chapter I: Energy; http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ref3.pdf, p. I.42 )]
 [(IPCC2000> IPCC, 2000: Intergovernmental Panel on Climate Change, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, IPCC Secretariat, 16th Session, Montreal, 1-8 May 2000, URL: http://www.ipcc-nggip.iges.or.jp/public/gp/english/ )] [(IPCC2000> IPCC, 2000: Intergovernmental Panel on Climate Change, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, IPCC Secretariat, 16th Session, Montreal, 1-8 May 2000, URL: http://www.ipcc-nggip.iges.or.jp/public/gp/english/ )]
-[(EMEPEEA2019> EMEP/EEA, 2016: EMEP/EEA air pollutant emission inventory guidebook 2019, Copenhagen, 2019.)] 
 [(EUROCONTROL2006> EUROCONTROL, 2006 – The Advanced Emission Model (AEM3) - Validation Report, Jelinek, F., Carlier, S., Smith, J., EEC Report EEC/SEE/2004/004, Brüssel 2004 URL: http://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2004_016.html http://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2006_030.html )] [(EUROCONTROL2006> EUROCONTROL, 2006 – The Advanced Emission Model (AEM3) - Validation Report, Jelinek, F., Carlier, S., Smith, J., EEC Report EEC/SEE/2004/004, Brüssel 2004 URL: http://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2004_016.html http://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2006_030.html )]
- 
-  
-: 5 : UBA, 2001a: Umweltbundesamt: UBA-Text 17/01: Maßnahmen zur verursacherbezogenen Schadstoffreduzierung des zivilen Flugverkehrs 
-: 6 : ÖKO-INSTITUT, 2009: Überarbeitung des Emissionsinventars des Flugverkehrs, vorläufiger Endbericht zum F+E-Vorhaben 360 16 019, Berlin, August 2009. 
- 
- 
-: 9 : CORINAIR, 2006 - EMEP/CORINAIR Emission Inventory Guidebook - 2006, EEA technical report No. 11/2006; Dezember 2006, Kopenhagen, 2006 URL: http://www.eea.europa.eu/publications/EMEPCORINAIR4 
- 
- 
- 
-