1.A.3.a ii (i) - Domestic Civil Aviation: LTO

Short description

In NFR category 1.A.3.a ii (i) - Domestic Civil Aviation: LTO emissions from domestic flights between German airports occuring during LTO stage (Landing/Take-off: 0-3,000 feet) are reported.

Category Code Method AD EF
1.A.3.a ii (i) T1, T2, T3 NS, M CS, D, M
NOx NMVOC SO2 NH3 PM2.5 PM10 TSP BC CO PB Cd Hg Diox PAH HCB
Key Category: -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- - -/- -

Click to view Legend

Click to hide Legend

T = key source by Trend L = key source by Level

Methods
D Default
RA Reference Approach
T1 Tier 1 / Simple Methodology *
T2 Tier 2*
T3 Tier 3 / Detailed Methodology *
C CORINAIR
CS Country Specific
M Model
* as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2007, in the group specific chapters.
AD - Data Source for Activity Data
NS National Statistics
RS Regional Statistics
IS International Statistics
PS Plant Specific data
AS Associations, business organisations
Q specific questionnaires, surveys
EF - Emission Factors
D Default (EMEP Guidebook)
C Confidential
CS Country Specific
PS Plant Specific data

In the following, information on sub-category specific AD, (implied) emission factors and emission estimates are provided.

Methodology

Actitvity Data

Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the superordinate chapter.

Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Jet Kerosene 30.2 29.4 27.9 27.6 27.5 27.3 27.3 27.3 27.6 27.7 28.0 27.9 27.7 27.7 28.1 28.3 28.4 28.1 27.7
Aviation Gasoline 12.7 12.9 12.7 13.2 12.9 12.8 12.7 13.0 12.9 12.9 12.8 12.8 12.7 12.9 12.8 12.1 12.6 12.7 12.7

source: Knörr et al. (2021c) 1) &: Gores (2021) 2)

As explained above, the use of aviation gasoline is - due to a lack of further information - assumed to entirely take place within the LTO-range.

Table 2: annual LTO fuel consumption for domestic flights, in terajoule

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Jet Kerosene 9,380 8,303 9,811 9,187 9,402 9,493 9,422 9,021 8,589 7,869 8,171 7,633 7,297 7,358 7,844 8,210 8,362 8,476 3,867
Aviation Gasoline 245 119 113 71.7 64.7 60.0 63.0 60.2 56.9 65.1 58.3 52.1 49.8 58.0 47.0 44.2 44.7 37.4 24.8
∑ 1.A.3.a ii (i) 9,625 8,422 9,924 9,259 9,467 9,553 9,485 9,081 8,646 7,934 8,229 7,686 7,347 7,416 7,891 8,254 8,407 8,513 3,891

source: Knörr et al. (2020c) &: Gores (2020)

Annual enrgy input

Emission factors

All country-specific emission factors used for emission reporting were basically ascertained within UBA project FKZ 360 16 029 (Knörr, W., Schacht, A., & Gores, S. (2010)) 3) and have since then been compiled, revised and maintained in TREMOD AV.

Furthermore, the newly implemented EF(BC) have been estimated via f-BCs as provided in the 2019 EMEP/EEA Guidebook 4), Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: “Conclusion”.

For more details, please see the superordinate chapter on civil aviation.

Table 3: Country-specific emission factors, in kg/TJ

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
JET KEROSENE
NH3 3,98 3,95 3,95 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97 3,97
NMVOC 28,4 28,92 30,52 32,44 33,91 34,40 34,66 33,19 32,27 31,94 32,02 34,86 37,00 36,91 36,45 38,32 39,11 40,60 57,98
NOx 295 324 287 277 276 281 290 300 304 309 312 311 310 312 321 322 316 312 291
SOx 19,7 19,5 19,5 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6
BC1 1,43 1,57 1,54 1,61 1,62 1,59 1,47 1,48 1,51 1,50 1,52 1,53 1,50 1,52 1,44 1,44 1,56 1,46 1,68
PM2 2,99 3,28 3,21 3,36 3,38 3,32 3,06 3,07 3,14 3,13 3,17 3,18 3,12 3,17 3,01 2,99 3,25 3,05 3,50
CO 212 211 275 291 292 286 280 266 260 254 252 260 265 265 252 255 262 268 349
AVIATION GASOLINE
NH3 NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE
NMVOC 628 635 625 642 636 633 627 633 631 631 628 632 628 632 627 620 648 660 660
NOx 87,6 87,4 87,5 85,9 86,2 85,8 87,4 85,8 85,3 87,1 87,2 87,1 87,3 85,9 87,9 88,9 88,6 92,0 92,7
SOx 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46
BC1 5,91 5,92 5,97 6,21 6,14 6,20 5,95 6,2 6,3 5,9 5,9 5,9 5,9 6,1 5,8 5,6 5,7 5,1 5,0
PM2 39,4 39,4 39,8 41,4 41,0 41,3 39,7 41,4 42,0 39,6 39,4 39,5 39,2 41,0 38,6 37,3 38,1 34,2 33,4
TSP3 54,6 54,6 55,0 56,6 56,1 56,5 54,8 56,6 57,2 54,8 54,6 54,7 54,4 56,1 53,8 52,5 53,2 49,4 48,6
CO 17,603 17,600 17,623 17,217 17,482 17,633 17,637 17,659 17,804 17,797 17,932 17,770 17,951 17,878 17,977 18,210 17,408 17,046 17,009

1 estimated via a f-BCs (avgas: 0.15, jet kerosene: 0.48) as provided in 5)
2 EF(PM2.5,) also applied for PM10 and TSP (assumption: > 99% of TSP from diesel oil combustion consists of PM2.5)
3 also including TSP from lead: EF(TSP) = 1.6 x EF(Pb) - see road transport

For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.

Trend discussion for Key Sources

NFR sub-category 1.A.3.a ii (i) is no key source for emissions.

Where, for example, nitrogen oxides and sulphur oxides emissions are dominated by jet kerosene due to the amount of fuel used,—

Annual sulphur oxides emissions Annual nitrogen oxides emissions

… the majority of carbon monoxide stems from the consumption of avgas given the much higher emission factor applied to this fuel, with the emission trend following the trend in avgas consumption.

Here, Lead emissions, with no emission factor available for jet kerosene, are only calculated for avgas.

Annual carbon monoxide emissions Annual lead emissions

Recalculations

Activity data

In order to keep in line with the regularly updated data sets provided to the EEA by Eurocontrol, the average fuel use per LTO cycle has been updated again within TREMOD Aviation but with much smaller impact as in last year's submission.

Furthermore, as explained in the superordinate chapter, avgas consumption for international flights and outside the L/TO range has been estimated for the first time for this submission, with the respective amounts of avgas re-allocated accordingly.

Resulting from this revision, the percentual shares of kerosene consumed during LTO within TREMOD AV have been recalculated as shown in Table 4.

Table 4: Revised percentual share of kerosene and avgas consumed during L/TO for domestic flights, in %

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
JET KEROSENE
Submission 2022 30.2 29.4 27.9 27.6 27.5 27.3 27.3 27.3 27.6 27.7 28.0 27.9 27.7 27.7 28.1 28.3 28.4 28.1
Submission 2021 30.2 29.4 27.9 27.6 27.5 27.3 27.3 27.3 27.6 27.7 28.0 27.9 27.7 27.7 28.1 28.3 28.4 28.1
absolute change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
relative change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17%
AVGAS
Submission 2022 12.7 12.9 12.7 13.2 12.9 12.8 12.7 13.0 12.9 12.9 12.8 12.8 12.7 12.9 12.8 12.1 12.6 12.7
Submission 2021 18.9 36.0 33.6 50.2 52.1 55.4 51.6 51.2 49.9 46.7 49.1 54.0 56.8 51.4 61.8 62.0 68.0 76.0
absolute change -6.16 -23.2 -21.0 -37.0 -39.2 -42.6 -38.9 -38.2 -36.9 -33.8 -36.3 -41.2 -44.2 -38.5 -49.0 -49.8 -55.4 -63.3
relative change -32.6% -64.3% -62.3% -73.7% -75.2% -76.9% -75.4% -74.7% -74.0% -72.3% -74.0% -76.2% -77.7% -75.0% -79.3% -80.4% -81.5% -83.2%

Hence, the amounts of kerosene and avgas allocated to sub-category 1.A.3.a ii (i) had to be revised accordingly:

Table 5: Revised fuel consumption data, in terajoule

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
JET KEROSENE
Submission 2022 9,380 8,303 9,811 9,187 9,402 9,493 9,422 9,021 8,589 7,869 8,171 7,633 7,297 7,358 7,844 8,210 8,362 8,476
Submission 2021 9,380 8,303 9,811 9,187 9,402 9,493 9,422 9,021 8,589 7,869 8,171 7,633 7,297 7,358 7,844 8,210 8,362 8,417
absolute change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 58.4
relative change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.69%
AVGAS
Submission 2022 245 119 113 71.7 64.7 60.0 63.0 60.2 56.9 65.1 58.3 52.1 49.8 58.0 47.0 44.2 44.7 37.4
Submission 2021 368 346 311 293 283 283 276 255 236 248 237 234 237 246 234 232 248 229
absolute change -123 -227 -198 -222 -218 -223 -213 -195 -179 -183 -179 -182 -188 -188 -187 -188 -203 -192
relative change -33.3% -65.7% -63.7% -75.6% -77.2% -78.8% -77.2% -76.4% -75.8% -73.8% -75.4% -77.7% -79.0% -76.5% -79.9% -81.0% -81.9% -83.7%

In parallel, the majority of country-specific emission factors has been revised within TREMOD AV based on information available from the 2019 EMEP/EEA Guidebook 6) and Eurocontrol's AEM model 7) but cannot be displayed here in a proper way.

For pollutant-specific information on recalculated emission estimates for Base Year and 2019, please see the recalculation tables following chapter 8.1 - Recalculations.

Uncertainties

For uncertainties information, please see main chapter on civil aviation.

Planned improvements

For information on planned improvements, please see main chapter on civil aviation.


1) Knörr et al. (2021c): Knörr, W., Schacht, A., & Gores, S.: TREMOD Aviation (TREMOD AV) 2021 - Revision des Modells zur Berechnung des Flugverkehrs (TREMOD-AV). Heidelberg, Berlin: Ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH & Öko-Institut e.V., Berlin & Heidelberg, 2021.
2) Gores (2021): Inventartool zum deutschen Flugverkehrsinventar 1990-2020, im Rahmen der Aktualisierung des Moduls TREMOD-AV im Transportemissionsmodell TREMOD, Berlin, 2021.
3) Knörr, W., Schacht, A., & Gores, S. (2010): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.
4), 5), 6) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation/view; Copenhagen, 2019.