1.A.3.d i (i) - International maritime navigation

Short description

Under NFR category 1.A.3.d i (i), emissions from international maritime navigation fuelling in and starting form German harbours are reported.

Category Code Method AD EF
1.A.3.d i (i) T1, T2, T3 NS, M CS, M
Key Category SO2 NOx NH3 NMVOC CO BC Pb Hg Cd Diox PAH HCB TSP PM10 PM2.5
1.A.3.d i (i) not included in key category analysis

Click to view Legend

Click to hide Legend

T = key source by Trend L = key source by Level

Methods
D Default
RA Reference Approach
T1 Tier 1 / Simple Methodology *
T2 Tier 2*
T3 Tier 3 / Detailed Methodology *
C CORINAIR
CS Country Specific
M Model
* as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2007, in the group specific chapters.
AD - Data Source for Activity Data
NS National Statistics
RS Regional Statistics
IS International Statistics
PS Plant Specific data
AS Associations, business organisations
Q specific questionnaires, surveys
EF - Emission Factors
D Default (EMEP Guidebook)
C Confidential
CS Country Specific
PS Plant Specific data


Methodology

Activity data

Primary fuel delivery data (primary activity data, PAD) for international maritime navigation is included in line 6 - 'International Deep-Sea Bunkers' of the National Energy Balances (NEB) (AGEB, 2021) 1) together with respective data for IMO-registered ships used in national maritime transport (see 1.A.3.d ii (a)), fishing (see NFR 1.A.4.c iii) and military navigation (see NFR 1.A.5.b iii).

The AD applied for international maritime navigation therefore represents the remains of primary fuel delivery data from NEB line 6 minus the modelled consumption data estimated for non-IMO ships in 1.A.3.d ii (a), 1.A.4.c iii and 1.A.5.b iii:

AD1.A.3.d i = PADNEB line 6 - AD1.A.3.d ii (a) - IMO - AD1.A.4.c iii - IMO - AD1.A.5.b iii - IMO

with
* AD1.A.3.d i - tier1 activity data for International maritime navigation
* PADNEB line 6 - primary over-all fuel deliveries data from NEB line 6 - 'International Maritime Bunkers'
* AD1.A.3.d ii (a) - IMO - tier3 activity data for IMO-registered ships involved in national maritime navigation
* AD1.A.4.c iii - IMO - tier3 activity data for IMO-registered ships involved in national fishing
* AD1.A.5.b iii - IMO - tier3 activity data for IMO-registered ships involved in military navigation

As a result, activity data can fluctuate strongly from year to year.

However, this effect can be explained with the fact that large ocean-going ships do not need to bunker fuels on every single harbour but can go on for weeks without any additional fuel uptake.

This can be further increased with increasing differences in fuel prices.

Table 1: Annual fuel consumption, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Diesel Oil 13,162 13,096 13,709 11,820 15,629 12,954 8,075 14,095 16,417 15,020 12,181 11,875 13,801 33,958 32,832 27,463 21,473 20,231 13,896
Heavy fuel oil 76,942 62,066 67,080 83,224 83,164 101,820 101,466 90,542 91,169 90,779 85,586 75,559 71,598 57,792 74,807 58,707 39,308 26,565 32,253
Ʃ 1.A.3.d i 90,104 75,162 80,789 95,044 98,793 114,774 109,542 104,637 107,586 105,799 97,768 87,434 85,398 91,750 107,639 86,169 60,781 46,796 46,150

source: own estimates based on underlying BSH model (Deichnik, K. (2021)) 2)

Consumption of heavy oil has been increasing since 1984 as a result of high petroleum prices, global increases in transports and increasing maritime use of diesel engines that can run on heavy oil. The emissions fluctuations that occurred in the navigation sector in 1992 and 1996 were caused by trade and oil crises.

Furthermore, after 2014, with ever stricter legislation espacially regarding fuel sulphur content, an ongoing shift from heavy fuel oil to maritime diesel oil can be observed.

Emission factors

For main pollutants and particulate matter, modelled emission factors are available from (Deichnik, K. (2021)).

Here, for sulphur dioxide and particulate matter, annual values are available representing the impact of fuel sulphur legislation. In addition, regarding SO2, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.

Table 2: Annual country-specific emission factors, in kg/TJ

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
DIESEL OIL
NH3 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
NMVOC 48.5 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 47.7 44.9 44.4 43.9 44.2 43.8 44.0 44.0
NOx 1,101 1,101 1,101 1,101 1,101 1,101 1,101 1,101 1,101 1,101 1,119 1,126 1,155 1,184 1,183 1,189 1,200 1,199 1,169
SOx 466 419 233 186 186 186 140 69.8 69.8 65.2 54.8 52.9 51.1 37.2 37.2 37.2 37.2 37.2 37.2
BC1 110 99.1 55.0 44.0 44.1 44.1 33.0 16.5 16.5 15.5 15.4 15.3 15.3 17.4 17.7 17.7 17.3 17.5 16.8
PM2.5 354 320 177 142 142 142 106 53,3 53,3 49,9 49,8 49,3 49,4 56,2 57,1 57,1 55,9 56,5 54,2
PM10 378 342 190 152 152 152 114 57,1 57,1 53,4 53,3 52,7 52,9 60,1 61,1 61,1 59,8 60,4 58,0
TSP2 378 342 190 152 152 152 114 57,1 57,1 53,4 53,3 52,7 52,9 60,1 61,1 61,1 59,8 60,4 58,0
CO 128 128 128 128 128 128 128 128 128 129 128 128 130 140 142 141 139 140 138
HEAVY FUEL OIL
NH3 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34
NMVOC 43.0 42.8 42.9 42.9 42.8 42.8 42.9 42.8 42.8 42.7 42.8 41.6 42.3 26.1 30.2 33.7 32.5 32.7 37.4
NOx 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,367 1,368 1,367 1,367 1,384 1,433 1,487 1,440 1,479 1,480 1,507 1,509
SOx 1,319 1,332 1,323 1,336 744 742 742 744 496 496 496 495 506 48.6 49.2 48.1 45.9 46.5 48.1
BC1 70.8 71.2 70.8 71.6 39.8 39.7 39.7 39.7 26.5 26.5 26.5 25.6 25.6 14.2 18.0 20.1 19.1 18.9 21.4
PM2.5 590 594 590 596 331 331 331 331 221 221 221 213 213 118 150 168 159 158 179
PM10 649 653 649 656 365 364 364 364 243 243 243 234 235 130 165 184 175 173 197
TSP2 649 653 649 656 365 364 364 364 243 243 243 234 235 130 165 184 175 173 197
CO 179 179 179 179 179 179 179 179 179 179 179 175 173 144 162 157 156 150 151

1 estimated from f-BCs as provided in 3): f-BC (HFO) = 0.12, f-BC (MDO/MGO) = 0.31 as provided in 4), chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2
2 ratios PM2.5 : PM10 : TSP derived from the tier1 default EF as provided in 5), chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2

For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.

NFR 1.A.3.d i is not considered in the key category analysis.

Basically, with no significant technical improvements with respect to mitigation technologies, trends in emissions depend more or less directly the amounts of fuels bunkered in German harbours and the contributions of diesel oil/light heating oil and heavy fuel oil to the over-all fuel input.

Here, as the amounts of fuels allocated to international maritime navigation represent the remains of annual over-all inland fuel deliveries minus fuel consumption in domestic shipping, activity data and, hence, emissions, fluctuate strongly from year to year (see also information on activity data as stated above).

Therefore, especially emission trends for unregulated pollutants (such as NH3, NOx, NMVOC and CO, all HM and POPs) with only slight changes in the annual over-all IEFs applied, follow the trends in fuel consumption and the shares of diesel and heavy fuel oil:

In contrast, emission trends for SOx and PM, both depending on the fuel's sulphur content, follow not only the trends in fuel consumption but do also reflect fuel-sulphur legislation:

 Annual sulphur oxides emissions  Annual particulate matter emissions

Recalculations

Resulting from changes in the fuel consumption data computed within 6) for domestic maritime navigation, the activity data for international maritime navigation have been revised for the entire timeseries.

Table 3: Revised annual fuel consumption data, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
DIESEL OIL
current submission 13,162 13,096 13,709 11,820 15,629 12,954 8,075 14,095 16,417 15,020 12,181 11,875 13,801 33,958 32,832 27,463 21,473 20,231
previous submission 12,748 12,919 13,664 11,993 15,817 17,524 13,105 14,412 16,662 15,370 12,594 12,414 13,674 33,088 28,093 22,924 15,213 18,327
absolute change 413 176 44.9 -173 -188 -4,570 -5,030 -317 -246 -350 -412 -539 126 870 4,738 4,538 6,260 1,904
relative change 3.24% 1.36% 0.33% -1.44% -1.19% -26.1% -38.4% -2.20% -1.48% -2.28% -3.27% -4.35% 0.92% 2.63% 16.9% 19.8% 41.1% 10.4%
HEAVY FUEL OIL
current submission 76,942 62,066 67,080 83,224 83,164 101,820 101,466 90,542 91,169 90,779 85,586 75,559 71,598 57,792 74,807 58,707 39,308 26,565
previous submission 68,484 56,323 60,984 78,182 78,257 96,625 96,017 85,865 86,934 86,687 81,171 71,364 67,670 57,850 74,837 58,781 39,380 26,601
absolute change 8,458 5,743 6,096 5,042 4,907 5,195 5,449 4,678 4,236 4,092 4,415 4,195 3,928 -57.9 -30.0 -74.1 -71.7 -35.9
relative change 12.4% 10.2% 10.0% 6.45% 6.27% 5.38% 5.68% 5.45% 4.87% 4.72% 5.44% 5.88% 5.80% -0.10% -0.04% -0.13% -0.18% -0.14%
OVER-ALL FUEL CONSUMPTION
current submission 90,239 75,275 80,910 95,187 98,941 114,946 109,706 104,794 107,747 105,958 97,914 87,565 85,527 91,888 107,800 86,299 60,872 46,866
previous submission 81,354 69,346 74,760 90,310 94,215 114,320 109,286 100,428 103,751 102,210 93,905 83,904 81,466 91,075 103,085 81,828 54,674 44,995
absolute change 8,885 5,929 6,150 4,877 4,726 626 420 4,367 3,996 3,748 4,009 3,661 4,060 813 4,715 4,471 6,197 1,871
relative change 10.9% 8.55% 8.23% 5.40% 5.02% 0.55% 0.38% 4.35% 3.85% 3.67% 4.27% 4.36% 4.98% 0.89% 4.57% 5.46% 11.3% 4.16%

1 as provided in AGEB(2021) 7), line 6: “Hochseebunkerungen”: including light heating oil

In addition, all country-specific emission factors have been revised compared to last year's submission but cannot be displayed here.

For pollutant-specific information on recalculated emission estimates for Base Year and 2019, please see the recalculation tables following chapter 8.1 - Recalculations.

Uncertainties

Uncertainty estimates for activity data of mobile sources derive from research project FKZ 360 16 023: “Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland” by Knörr et al. (2009) 8).

Planned improvements

Besides routine maintenance and further development of the BSH model, no improvements are planned.

FAQs


1), 7) AGEB, 2021: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, Köln & Berlin, 2021.
2), 6) Deichnik, K. (2021): Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2021.
3), 4), 5) EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, URL: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019; Copenhagen, 2019.
8) Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.