1.A.3.d ii - National Navigation

Short description

Under category 1.A.3.d ii - National Navigation emissions from national navigation (both inland and maritime) are reported.

Category Code Method AD EF
1.A.3.d ii T1, T2, T3 NS, M CS, D, M
NOx NMVOC SO2 NH3 PM2.5 PM10 TSP BC CO PB Cd Hg Diox PAH HCB
Key Category: L/- -/- -/- -/- L/T -/T -/- -/- -/- -/- -/- -/- -/- -/- -/-

Click to view Legend

Click to hide Legend

T = key source by Trend L = key source by Level

Methods
D Default
RA Reference Approach
T1 Tier 1 / Simple Methodology *
T2 Tier 2*
T3 Tier 3 / Detailed Methodology *
C CORINAIR
CS Country Specific
M Model
* as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2007, in the group specific chapters.
AD - Data Source for Activity Data
NS National Statistics
RS Regional Statistics
IS International Statistics
PS Plant Specific data
AS Associations, business organisations
Q specific questionnaires, surveys
EF - Emission Factors
D Default (EMEP Guidebook)
C Confidential
CS Country Specific
PS Plant Specific data

Methodology

Activity data

As described for the over-all sector 1.A.3.d and all other navigational activities in the superordinate chapter, specific fuel consumption data for NFR 1.A.3.d ii is included in the primary fuel deliveries data provided in NEB lines 6 ('International Maritime Bunkers') and 64 ('Coastal and Inland Navigation') 1).

Here, the annual fuel consumption for domestic maritime navigation are modelled within 2) based on AIS data and deduced from NEB lines 6 and 64 respectively, depending on whether or not a certain ship is registered by the International Maritime Organization (IMO). Here, fuels consumed by large, IMO-registered and sea-going ships and vessels are included in NEB line 6 whereas fuels consumed by smaller ships without IMO-registration are included in NEB line 64. After these deductions, the amounts of fuels remaining in NEB 64 are allocated to domestic inland navigation.

Table 1: Annual over-all fuel consumption for domestic navigation, in terajoule

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Diesel Oil 37,199 30,389 19,231 19,250 17,553 17,930 17,268 17,365 16,872 17,719 17,411 17,768 18,878 22,301 20,466 19,110 20,064 20,756 18,417
Heavy fuel oil 3,103 2,186 2,382 2,054 2,025 2,160 2,278 1,988 1,810 1,790 1,932 2,134 2,057 108 37.0 81.1 262 394 368
Ʃ 1.A.3.d ii 40,303 32,575 21,613 21,304 19,579 20,090 19,546 19,353 18,682 19,509 19,343 19,902 20,935 22,409 20,503 19,191 20,326 21,150 21,150

Table 2: Specific fuel consumption data for domestic maritime and inland navigation, in terajoule

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
NATIONAL MARITIME NAVIGATION
Diesel Oil 9,484 6,828 7,367 6,399 6,360 6,763 7,101 6,254 5,690 5,669 6,089 6,133 6,766 8,980 9,335 8,960 9,445 9,497 8,339
Heavy fuel oil 3,103 2,186 2,382 2,054 2,025 2,160 2,278 1,988 1,810 1,790 1,932 2,134 2,057 108,0 37,0 81,1 262 394 368
NATIONAL INLAND NAVIGATION
Diesel Oil 27,716 23,562 11,864 12,851 11,193 11,167 10,167 11,111 11,182 12,050 11,322 11,635 12,112 13,321 11,131 10,150 10,619 11,259 10,078
Ʃ 1.A.3.d ii 40,303 32,575 21,613 21,304 19,579 20,090 19,546 19,353 18,682 19,509 19,343 19,902 20,935 22,409 20,503 19,191 20,326 21,150 18,785

Emission factors

The emission factors applied for national maritime navigation are derived from different sources and therefore are of very different quality.

For the main pollutants, country-specific implied values are used, that are based on tier3 EF included in the BSH model 3) which mainly relate on values from the EMEP/EEA guidebook 2019 4). These modelled IEFs take into account the ship specific information derived from AIS data as well as the mix of fuel-qualities applied depending on the type of ship and the current state of activity.

Here, for sulphur dioxide and particulate matter, annual values are available representing the impact of fuel sulphur legislation. In addition, regarding 2, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.

Table 3: Country-specific emission factors applied for fuels used in domestic maritime navigation, in [kg/TJ]

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
DIESEL OIL
NH3 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32
NMVOC 48,5 48,4 48,4 48,4 48,4 48,4 48,4 48,4 48,4 48,4 48,4 47,7 44,9 44,4 43,9 44,2 43,8 44,0 44,0
NOx 1.101 1.101 1.101 1.101 1.101 1.101 1.101 1.101 1.101 1.101 1.119 1.126 1.155 1.184 1.183 1.189 1.200 1.199 1.169
SO2 466 419 233 186 186 186 140 69,8 69,8 65,2 54,8 52,9 51,1 37,2 37,2 37,2 37,2 37,2 37,2
BC1 110 99,1 55,0 44,0 44,1 44,1 33,0 16,5 16,5 15,5 15,4 15,3 15,3 17,4 17,7 17,7 17,3 17,5 16,8
PM2.5 354 320 177 142 142 142 106 53,3 53,3 49,9 49,8 49,3 49,4 56,2 57,1 57,1 55,9 56,5 54,2
PM10 378 342 190 152 152 152 114 57,1 57,1 53,4 53,3 52,7 52,9 60,1 61,1 61,1 59,8 60,4 58,0
TSP2 378 342 190 152 152 152 114 57,1 57,1 53,4 53,3 52,7 52,9 60,1 61,1 61,1 59,8 60,4 58,0
CO 128 128 128 128 128 128 128 128 128 129 128 128 130 140 142 141 139 140 138
HEAVY FUEL OIL
NH3 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,34 0,34 0,34 0,34 0,34 0,34 0,34
NMVOC 43,0 42,8 42,9 42,9 42,8 42,8 42,9 42,8 42,8 42,7 42,8 41,6 42,3 26,1 30,2 33,7 32,5 32,7 37,4
NOx 1.368 1.368 1.368 1.368 1.368 1.368 1.368 1.367 1.368 1.367 1.367 1.384 1.433 1.487 1.440 1.479 1.480 1.507 1.509
SOx 1.319 1.332 1.323 1.336 744 742 742 744 496 496 496 495 506 48,6 49,2 48,1 45,9 46,5 48,1
BC1 70,8 71,2 70,8 71,6 39,8 39,7 39,7 39,7 26,5 26,5 26,5 25,6 25,6 14,2 18,0 20,1 19,1 18,9 21,4
PM2.5 590 594 590 596 331 331 331 331 221 221 221 213 213 118 150 168 159 158 179
PM10 649 653 649 656 365 364 364 364 243 243 243 234 235 130 165 184 175 173 197
TSP2 649 653 649 656 365 364 364 364 243 243 243 234 235 130 165 184 175 173 197
CO 179 179 179 179 179 179 179 179 179 179 179 175 173 144 162 157 156 150 151

1 estimated from f-BCs as provided in 5): f-BC (HFO) = 0.12, f-BC (MDO/MGO) = 0.31 as provided in 6), chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2
2 ratio of PM2.5 : PM10 : TSP derived from the tier1 default EF as provided in 7), chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2

For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

For main pollutants and particulate matter from national inland navigation, modelled emission factors are available from TREMOD (Knörr et al. (2021a)) 8). Here, for SO2, and PM, annual values reflect the impact of fuel-sulphur legislation.

Table 4: Country-specific emission factors for diesel fuels used in domestic inland navigation, in [kg/TJ]

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
NH3 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
NMVOC 96.4 87.9 77.7 72.3 71.1 70.0 68.9 67.8 67.1 66.0 64.7 63.7 62.7 61.5 60.6 59.7 58.7 58.0 57.1
NOx 1,327 1,331 1,336 1,289 1,278 1,267 1,256 1,244 1,234 1,225 1,212 1,201 1,190 1,177 1,166 1,154 1,143 1,134 1,123
SOx 85.2 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
BC1 17.5 16.0 14.1 11.8 11.3 10.8 10.3 9.72 9.29 9.09 8.84 8.63 8.45 8.24 8.08 7.91 7.74 7.62 7.47
PM2 56.5 51.7 45.6 38.1 36.5 34.8 33.1 31.4 30.0 29.3 28.5 27.8 27.3 26.6 26.1 25.5 25.0 24.6 24.1
CO 417 387 337 299 290 282 274 265 259 254 248 242 237 232 227 223 218 215 210

1 calculated from f-BC as provided in 9), Chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii, Table 3-2: f-BC (MDO/MGO) = 0.31
2 EF(PM2.5) also applied for PM10 and TSP (assumption: > 99% of TSP from diesel oil combustion consists of PM2.5)

With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.

Table 5: Outcome of Key Category Analysis

for: PM10 PM2.5
by: L/T L/T

For ammonia, NMVOC, and nitrogen oxides as well as carbon monoxide, emission trends more or less represent the trend in over-all fuel consumption.

Nonetheless, for these pollutants, annual emission factors from BSH 10) and TREMOD 11) have been applied for national maritime and inland navigation, respectively, reflecting the technical development of the German inland navigation fleet.

Here, the trends in sulphur dioxide and particulate matter emissions reflect the impact of ongoing fuel-sulphur legislation especially in maritime navigation.

 Annual sulphur oxides emissions  Annual particulate matter emissions

Recalculations

Major changes in activity data result from the revision of the National Energy Balance 2019. Furthermore, as no biodiesel is blended to marine diesel oil for technical reasons, no more biodiesel is reported for nautical activities. This correction results in additional recalculations for all years as of 2004.

Table 6: Revised fuel consumption data for national maritime navigation, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
DIESEL OIL
current submission 9.484 6.828 7.367 6.399 6.360 6.763 7.101 6.254 5.690 5.669 6.089 6.133 6.766 8.980 9.335 8.960 9.445 9.497
previous submission 15.940 11.258 11.860 9.962 9.845 10.395 10.834 9.486 8.685 8.489 9.046 9.047 9.965 13.359 16.295 15.221 16.336 13.961
absolute change -6.456 -4.430 -4.492 -3.563 -3.484 -3.632 -3.733 -3.232 -2.996 -2.820 -2.957 -2.913 -3.199 -4.379 -6.960 -6.261 -6.891 -4.464
relative change -40,5% -39,4% -37,9% -35,8% -35,4% -34,9% -34,5% -34,1% -34,5% -33,2% -32,7% -32,2% -32,1% -32,8% -42,7% -41,1% -42,2% -32,0%
HEAVY FUEL OIL
current submission 3.103 2.186 2.382 2.054 2.025 2.160 2.278 1.988 1.810 1.790 1.932 2.134 2.057 108 37,0 81,1 262 394
previous submission 11.723 8.041 8.577 7.172 7.004 7.425 7.797 6.733 6.114 5.961 6.410 6.376 6.046 50,0 7,05 7,01 190 358
absolute change -8.619 -5.855 -6.195 -5.118 -4.979 -5.265 -5.519 -4.745 -4.304 -4.171 -4.478 -4.242 -3.989 57,9 30,0 74,1 71,7 35,9
relative change -73,5% -72,8% -72,2% -71,4% -71,1% -70,9% -70,8% -70,5% -70,4% -70,0% -69,9% -66,5% -66,0% 116% 425% 1057% 37,7% 10,0%

Table 7: Revised fuel consumption data for national inland navigation, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
current submission 27.716 23.562 11.864 12.851 11.193 11.167 10.167 11.111 11.182 12.050 11.322 11.635 12.112 13.321 11.131 10.150 10.619 11.259
previous submission 20.664 18.597 6.788 8.634 7.050 6.836 5.683 7.129 7.497 8.466 7.556 7.777 8.567 9.422 7.873 7.179 7.511 7.595
absolute change 7.052 4.965 5.076 4.217 4.143 4.330 4.484 3.981 3.685 3.584 3.766 3.858 3.545 3.899 3.258 2.971 3.108 3.664
relative change 34,1% 26,7% 74,8% 48,8% 58,8% 63,3% 78,9% 55,8% 49,1% 42,3% 49,8% 49,6% 41,4% 41,4% 41,4% 41,4% 41,4% 48,2%

Furthermore, most of the country-specific emission factors applied for both national maritime navigation and domestic inland navigation have been revised within the BSH model and TREMOD, respectively.

For pollutant-specific information on recalculated emission estimates for Base Year and 2019, please see the recalculation tables following chapter 8.1 - Recalculations.

Uncertainties

Uncertainty estimates for activity data of mobile sources derive from research project FKZ 360 16 023: “Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland” by Knörr et al. (2009) 12).

Planned improvements

Besides the routine revisions of the models used for maritime and inland navigation, no specific improvements are scheduled.


1) AGEB, 2021: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, (Aufruf: 23.11.2021), Köln & Berlin, 2021
2), 3), 10) Deichnik (2021): Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH - Federal Maritime and Hydrographic Agency); Hamburg, 2021.
4), 5), 6), 7), 9) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.
8), 11) Knörr et al. (2021a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2021.
12) Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.